Accelerated Bridge Construction Research at UNR- Seismic Performance of Bridge Columns and Systems

M. Saiid Saiidi

S. Motaref, Z. Haber, F. Kavianipour, S. Varela, and M. Tazarv

Accelerated Bridge Construction (ABC)

Big Picture Problem

- Increasing Number of Deficient Bridge Structures
- High Dependence on Surface Infrastructure
- Increased City Densities and Driver Populous

▶ Technology–Ready Solution: ABC

- Collection of Design and Construction Methods
- Numerous Associated Benefits
- The Use of Prefabricated Bridge Systems is Paramount

Challenges

- Contractor Learning Curve
- Prefabricated Systems Can Pose Design Challenges

ABC Advantages

- Fabricated in a controlled environment
- Improved quality and durability
- Reduced traffic disruption
- Improved work zone safety
- Simple construction
- Fast assembly
- Low residual displacement (when post-tensioned)

Challenges for ABC in Seismic Zones

- Columns in Conventional Bridges
 - Support Superstructure
 - Dissipate Energy
 - Expected to Undergo Damage
- Design and Detailing of Connections is Critical
- Lack of Data Has Resulted in Limited use of ABC in Seismic Zones

Regions

4 Research Topics

- Emulative Precast Column Footing Connections
- Innovation in Column Connections for ABC
- 3. ABC Bridge Systems
- 4. ABC Design for Disassembly (DFD)

Emulative Precast Column Footing Connections

 Objective: Study seismic response of rigid connections between precast columns and footings

Mechanical Rebar Couplers **Tapered** Straight Thread (TT) Thread (ST) Upset Headed (UH) Shear-Grouted Screw (SS) Sleeve (GS)

Mechanical Rebar Couplers

5 Half-Scale Column Models

- Caltrans Seismic Design
 Criteria (Disp. Ductility ≥ 5)
- Design Details
 - 9ft Tall; 2ft Diameter
 - 11 #8 Longitudinal Steel (1.9%)
 - #3 Spiral @ 2in Pitch (1%)
 - \circ Axial Load = 226kip (0.1f'_c A_g)
- Precast Hollow Shell Design
- Filled with SCC
- Use of Precast Pedestal

Column Models

- CIP : Cast-in-place benchmark
- 2. HCNP: Headed bar coupler; no pedestal
- 3. HCPP: Headed bar coupler; precast pedestal
- 4. GCNP: Grouted coupler; no pedestal
- 5. GCPP: Grouted coupler; precast pedestal

Connection Details - HC Models Closure Forn-Connection Grout L **Footing**

HRC Couplers

Custom Built Length

Fillers

Connection Details - GC Models

Columns with Pedestal

Testing

5% Drift – Push Cycle 2 **HCNP** CIP

 $\mu_{\rm D} = 3.6$ F = 65.9 kip

 $\mu_{\rm D} = 3.2$

 $\mu_{D} = 3.7$ F = 67.8 kip F = 70.4 kip

5% Drift – Push Cycle 2 HCPP GCPP

 $\mu_D = 3.7$ F = 67.9 kip

"Cigar Moment!"

Observations -Damage at Failure

CIP (2nd Cycle 10% Drift)

HCNP (2nd Cycle 10% Drift)

Observations -Damage at Failure

HCPP (10% Drift)

GCPP (6% Drift)

Force-Displacement Responses

Effect of Pedestal in Grouted Ducts

Longitudinal Bar Strains

Results - Pushover Curves

Observations:

- >Headed couplers performed well and may be appropriate even under high seismic demand.
- Crouted couplers performed reasonably well. With a drift capacity of 6%, slight improvement might make them qualify as "ultimate couplers."
- >Grouted couplers are much easier to construct than HRC couplers.

Plastic Hinge Behavior

Phase II- 3 Half-Scale Column Models

ABC w/ SMA/ECC

Precast Columns Incorporating UHPC-Filled Duct System:

Two Column Models

- Conventional Materials in Plastic Hinge (PNC)
- Advanced Materials in Plastic Hinge (HCS)

Connection

- UHPC-Filled Duct Connections

(2) Precast Column

Column Geometry

- Half-Scale
- Height: 9 *ft* (2.74 *m*)
- Diameter: 24 in. (610 mm)

- 11-#8 (Ø25 *mm*) Longitudinal Bars

 $(\rho_1 = 1.92\%)$

- Spiral, $\rho_s = 1.03\%$
- Axial Load Index: 10% (200-kip axial load on specimens)

(5) Filling Core w/ SCC

(4) Installing Column

(3) Filling Duct w/ UHPC

Column w/ no couplers at 8% drift (failure)

Column w/ offset grouted couplers and unbonded pedestal bars at 8% drift (failure)

Phase II- 3 Half-Scale Column Models

ABC w/ SMA/ECC

#10 SMA Bars w/ HRC Couplers

Innovation and ABC

▶ ABC--- Innovation in construction

In addition, ABC provides opportunity for innovation in connection detailing and materials.

Segmental Precast Columns -- Post-tensioned

Advantage: Recentering by PT

Disadvantage: Low energy dissipation; Damage

Conventional RC vs Conventional Post-tensioned Columns

Conventional RC:

- High energy dissipation
- Permanent drift
- Damage

Conventional PT:

- Low energy dissipation
- No permanent drift
- Damage

Columns	Name Description	Detail
SC-2	<u>S</u> egmental with <u>C</u> oncrete	Conventional RC
SBR-1	<u>S</u> egmental with <u>B</u> uilt-in- <u>R</u> ubber Pad	Built-in Elastomeric Pad
SF-2	Segmental with FRP	CFRPWrapped 2 Lower Segments
SE-2	Segmental with ECC	ECC in 2 Lower Segments
SC-2R	<u>S</u> egmental with <u>C</u> oncrete- <u>R</u> epaired	Conventional RC- Repaired w/ FRP

SC-2 Reference Case-**Conventional RC**

SBR-1

SF-2

CFRP Wrapped

SE-2

Engineered Cementitious

Composite

Typical ECC Tensile Stress Strain Curve

Damage after 5% Drift Ratio

2 SC-2R

Damage after 10% Drift Ratio (Failure)

Precast Two-Column Bent

- Pipe pins used on top of columns
- One column was conventional RC with ECC in plastic hinge
- One column was FRP tube filled with concrete (FRP fibers were+/- 55 degree)

Bent Construction

Shake table test at UNR

Columns condition at 5% Drift

Columns condition at 11% Drift (Failure)

Ruptured bars

Ruptured FRP Fibers

Force-Displacement Relationships

NSF-NEES 4-Span FRP Bridge

Concrete-filled FRP tubes piers

Cast-in-place

Segmental Pier Construction

Precast vs. CIP Column Damage

Conclusions on ABC w/ Innovative Materials/Connections

- ABC provides the opportunity to go beyond emulative design using advanced materials.
- The high initial cost of high-performance materials should be viewed in light of life cycle cost.
- Specifications and codes are needed to help promote ABC with advanced materials.

ABC Design for Disassembly (DFD)

Sustainable Highway Bridges with Novel Materials and Deconstructible Components

Small Business Partners

Fiber Matrix, Inc.

