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 Big Picture Problem
◦ Increasing Number of Deficient Bridge Structures
◦ High Dependence on Surface Infrastructure
◦ Increased City Densities and Driver Populous 

 Technology-Ready Solution:  ABC
◦ Collection of Design and Construction Methods 
◦ Numerous Associated Benefits
◦ The Use of Prefabricated Bridge Systems is 

Paramount

 Challenges
◦ Contractor Learning Curve 
◦ Prefabricated Systems Can Pose Design Challenges 



 Fabricated in a controlled 
environment 

 Improved quality and durability

 Reduced traffic disruption 

 Improved work zone safety

 Simple construction

 Fast assembly

 Low residual displacement 
(when post-tensioned)



• Columns in Conventional Bridges
• Support Superstructure 
• Dissipate Energy
• Expected to Undergo Damage

• Design and Detailing of 
Connections is Critical

• Lack of Data Has Resulted in 
Limited use of ABC in Seismic 
Zones

Connection 
Regions



1. Emulative Precast Column Footing 
Connections

2. Innovation in Column Connections for 
ABC

3. ABC Bridge Systems
4. ABC Design for Disassembly (DFD)



 Objective:  Study seismic response of rigid 
connections between precast columns and footings 
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 Caltrans Seismic Design 
Criteria (Disp. Ductility ≥ 5)

 Design Details
◦ 9ft Tall; 2ft Diameter
◦ 11 #8 Longitudinal Steel (1.9%)
◦ #3 Spiral @ 2in Pitch (1%)
◦ Axial Load  = 226kip (0.1f’c Ag)

 Precast Hollow Shell Design
 Filled with SCC
 Use of Precast Pedestal

No Pedestal Pedestal

Coupler
Location



1. CIP : Cast-in-place benchmark
2. HCNP:  Headed bar coupler; no pedestal
3. HCPP:   Headed bar coupler; precast pedestal
4. GCNP: Grouted coupler; no pedestal
5. GCPP: Grouted coupler; precast pedestal
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Connection Details – GC Models
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µD = 3.6 
F = 65.9 kip 

µD = 3.2 
F = 67.8 kip 

µD = 3.7 
F = 70.4 kip 

CIP HCNP GCNP



µD = 3.3 
F = 66.5 kip 

µD = 3.7 
F = 67.9 kip 

HCPP GCPP





CIP 
(2nd Cycle 
10% Drift) 

HCNP
(2nd Cycle 
10% Drift) 

GCNP
(2nd Cycle 
6% Drift) 



HCPP 
(10% Drift) 

GCPP
(6% Drift) 
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  Precast
Conventional
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Observations:

Headed couplers performed well and 
may be appropriate even under high
seismic demand.

Grouted couplers performed reasonably well.  
With a drift capacity of 6%, slight improvement  
might make them qualify as “ultimate 
couplers.”

Grouted couplers are much easier to 
construct than HRC couplers.
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Precast Columns Incorporating UHPC-Filled Duct System:  

 Two Column Models 
- Conventional Materials in Plastic 

Hinge (PNC)
- Advanced Materials in Plastic Hinge 

(HCS)

 Connection
- UHPC-Filled Duct Connections

 Column Geometry
- Half-Scale
- Height:  9 ft (2.74 m)
- Diameter:  24 in. (610 mm)

- 11-#8 (Ø25 mm) Longitudinal Bars  
(ρl=1.92%)
- Spiral, ρs=1.03%
- Axial Load Index: 10% (200-kip axial 
load on specimens)







Column w/ no couplers
at 8% drift (failure)

Column w/ offset grouted couplers 
and unbonded pedestal bars

at 8% drift (failure)
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 ABC--- Innovation in construction

 In addition, ABC provides opportunity 
for innovation in connection detailing 
and materials.



Advantage:   Recentering by PT

Disadvantage:  Low energy dissipation; 
Damage 



Conventional RC:

 High energy 
dissipation

 Permanent drift

 Damage

Conventional PT:

 Low energy 
dissipation

No permanent 
drift

Damage



Standard PT 
Segmental Column

New Detail for PT 
Segmental Column 

Energy 
dissipating base 

segment

Precast Segmental 
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SF-2 

CFRP Wrapped
SE-2 
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Damage after 
5% Drift Ratio

SBR-1 SF-2 SC-2RSE-2



Damage after 
10% Drift Ratio 

(Failure)

SBR-1 SC-2RSE-2SF-2
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 Pipe pins used on top of columns

 One column was conventional RC with ECC in plastic hinge 

 One column was FRP tube filled with concrete (FRP fibers 
were+/- 55 degree )

ECC

Pipe Pin

Pipe Pin

Concrete
FRP Tube

Pipe Pin

Embedment length=1.5 D











Ruptured 
bars 

Ruptured FRP Fibers 
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Pipe pins4 New Details



Cast-in-place

Precast















 ABC provides the opportunity to go beyond 

emulative design using advanced materials.  

 The high initial cost of high-performance 

materials should be viewed in light of life 

cycle cost.

 Specifications and codes are needed to help 

promote ABC with advanced materials.
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