

August 4, 2015; 11:00am-noon (MST)

TARGET AUDIENCE: This training webinar was developed from the engineer/designer perspective.

Today's Agenda:

- >Welcome/Overview (~5 min.)
- >Engineer/Designer Perspective Presentation (~40 min.)
- >Questions & Answers (~15 min.)
- >Next Steps (~3 min.)

SLIDE-IN BRIDGE CONSTRUCTION (SIBC) FROM THE ENGINEER/DESIGNER PERSPECTIVE

Administrative Items

- To join the audio, click the "Communicate" option from the menu bar and select either "Teleconference" (for phone) or "Audio Broadcast" (for "VOIP")
- > Full screen view controls (bottom left corner of screen)
- During the webinar, please use Q&A box for questions (see panel on right side of WebEx screen)
 - Please direct questions to "All Panelists"
 - Submit your questions <u>throughout</u> the presentation
- If you have technical problems with the audio and/or visual portions of this webinar, please call 303-740-2616

Accelerated Bridge Construction (ABC)

SLIDE-IN BRIDGE CONSTRUCTION (SIBC) FROM THE ENGINEER/DESIGNER PERSPECTIVE

August 4, 2015; 11:00am MST

Webinar Agenda

Featured Presentation: **Engineer/Designer Perspective** (~40 min.)

Questions & Answers (~15 min.)

Next Steps (~3 min.)

SELLWOOD BRIDGE

PROJECT

T.Y. Lin International Scott Nettleton, P.E., Project Manager

Presentation Outline

- Bridge History and Project Overview
- Goals of the Diversion
- Challenges for Engineering the Sellwood Shoo Fly
- Seismic Design and Wind Loading
- Staging
- **>** Photos
- Lessons Learned

Bridge History and Project Overview

PORTLAND'S LINDENTHAL BRIDGES

GOALSOF

DIVERSION

Goals of Diversion

Provide Full Service Detour, Improved Safety, Speed Construction and Cost Savings

Approaches in Place Truss Spans Translated

Option 1 Stage 1

Main Span Construction East Approach Staged

Option 1 - Stage 2, East approach first stage Construction

Complete East Approach

Option 1 - Stage 3, East approach second stage construction

Finish Demolition

http://www.sellwoodbridge.org

Finished Bridge, Options 1 and 2

CHALLENGES FOR

ENGINEERING THE

SELLWOOD SHOO FLY

Challenges for Engineering the Sellwood Shoo Fly

- Split responsibilities
 - Contractor Engineer provided approach structural designs
- Site Impacts
 - Condos on NE side
 - Coordination with City and Permitting
 - Communication of Intent to Permitting Agencies
- > Technical
 - **Foundations**
 - River Flow, Scour and Flood
 - Seismic Resistance
 - Wind (Controlling load case)
 - Staging
 - Connection to old structure

Foundations

Driving Frames and Vibratory Pile Installation

River Flow, Scour and Flood

Where is the flow coming from?

Tidal influence causes most long term scour

River Flow, Scour and Flood

Modeling of Proposed Construction

Photo 3. Flood-Tide Design Event Result (All Structures)

River Flow, Scour and Flood

SEISMIC DESIGN AND WIND LOADING

Seismic Design

Use of Existing Superstructure

Seismic Accelerations Reduced by 2.5 for Temporary Works Per AASHTO Guide Specification

Transverse

Seismic Design

Use of Existing Superstructure

Longitudinal

Wind Loading The Controlling Load

eriod of RecordOctober 1940 - May 1999												
	Cli	matic	Extremes of Wind (1951-June 1999)									
	Averages		Highest Avg.		Fastest Mile ²			Peak Wind Gust				
Month	Dir.	Speed	Speed	Year	Dir.	Speed	Year	Dir.	Speed	Year		
Jan.	ESE	9.9	15.1	1995	S	54	1951	sw	63	1990		
Feb.	ESE	9.2	12.2	1993	sw	61	1958	S	68	1965		
March	ESE	8.3	10.9	1956	S	57	1963	S	71	1971		
April	NW	7.4	9.3	1981	S	60	1957	S	63	1972		
May	NW	7.1	8.6	1963	sw	42	1960	sw	48	1971		
June	NW	7.2	9.1	1974	sw	40	1958	sw	40	1994, '97		
July	NW	7.6	8.9	1962	sw	33	1983	sw	35	1983		
Aug.	NW	7.1	8.7	1966	sw	29	1961	Е	38	1966		
Sept.	NW	6.5	8.0	1961	S	61	1963	sw	61	1963		
Oct.	ESE	6.5	8.4	1975	S	88	1962	S	104 ³	1962		
Nov.	ESE	8.6	11.2	1979	sw	56	1961	S	71	1981		
Dec.	ESE	9.5	12.9	1977	S	57	1951	S	74	1995 ⁴		
Annual	ESE	7.9	8.8	1995	S	88	Oct 1962	S	104 ³	Oct 1962		

Historical Data, Comparison with Topography and available study Conclusion - 65 MPH Design Wind Speed

STAGING

Staging

Additionally, the bridge width and the existing bridge rail do not meet current standards for a detour bridge

Connections to Existing

Material Properties, Geometry

Testing results are for Informational Purposes only

Specimen number	CH-2-1	CH-2-2	CH-3-1	CH-3-2
Location (Top of Core Depth)	1'3" to 1'11"	2'7" to 3'3"	0'0" to 0'8"	1'11" to 2'7"
Date tested	05/27/08	05/27/08	05/27/08	05/27/08
Nominal Maximum Aggregate Size	1 ½"	1 ½"	1 ½"	1 ½"
Length of specimen prior to capping	7.13	7.20	7.21	7.21
Length of specimen after capping	7.25	7.32	7.33	7.39
Direction of load in respect to	Р	Р	Р	Р
Moisture condition at time of testing	Surface Dry	Surface Dry	Surface Dry	Surface Dry
Average diameter of core specimen	3.66	3.66	3.66	3.66
Length to diameter ratio (I/d) *	1.98	2.00	2.00	2.02
Applied load at specimen failure (lbs)	72961	80508	61293	73125
Specimen area (sq. in.)	10.52	10.52	10.52	10.52
Uncorrected unit psi	6935	7653	5826	6951
Strength correction factor *				
Corrected unit psi (nearest 10 psi)	6940	7650	5830	6950

P - Perpendicular *Specimen correction factor applied when length to diameter ratio falls below 1.8.

Information gathering, corrections at final Inspection

Other Considerations

- Collision Fender
- Guard Rail Transition
- Piling Conflict Bent 17
- Support at Bent 21
- River Isolation
- Lighting

Truss Jacking System

Layout on a Radius

Original design assumed single support track

Truss Translation Layout

Layout of translation path was critical

Cradle Beam Design

Fitting Beams into Tight Spaces

Temporary Bearing

Steel Box Filled with Grout

Truss chords unable to take load

Sides cut to fit irregular shape of the bearing casting

Structure Translation

- Equipment
 - Pushing tugs and skids were rented, widely available
 - Teflon skidding surface lubricated with dish soap
 - Public was well informed = Good Press
- Loads
 - Structure was vertical loads 336 kips at ends, 900 kips interior
 - Skid force to move, estimated at less than 5%
- Monitoring
 - Advancement measured with marks on skid track

PHOTOS

Photos of the Slide

Photos of the Slide Cont.

Photos of the Slide Cont.

Photos of the Slide Cont.

VIDEO

LESSONS LEARNED

Lessons Learned

- Coordination and Planning pay off
 - Closure schedule was met
 - Opened 14 hours early
 - Public was well informed = Good Press
- Very specific in Provisions Concerning Limits
 - Drawings were used to define "ownership" of the work, specific repeat in the provisions would have been appropriate

Credits

Owner: Multnomah County

Engineers: T.Y. Lin International (Main Span Bridge)

CH2M HILL (Roadway & Geotechnical)

McGee Engineering (Approach Bridge)

CM/GC: Slayden-Sundt Joint Venture

Slide Subcontractor: Omega Morgan

Quick Facts:

Truss Length = 1,091 feet

Truss Weight = 3,400 Tons

Time to Slide = 13 hours

Questions?

QUESTION & ANSWER

PERIOD

Travis Boone, AECOM Moderator (~15 minutes)

NEXT STEPS

Travis Boone, AECOM Moderator (~3 minutes)

Websites/Resources

- SIBC Webinar Training Project Website
 - www.slideinbridgeconstruction.com
 - Future webinar registration, a recording of today's webinar, presentation slides, video, and Q&A results will be posted within 10 business days
- > FHWA SIBC Representative
 - Mr. Jamal Elkaissi, Resource Center, Lakewood, CO
 - **–** 720-963-3272
 - jamal.elkaissi@dot.gov
- FHWA SIBC Website
 - http://www.fhwa.dot.gov/construction/sibc/
 - SIBC Implementation Guide now available
 - Recently released: Slide-In Bridge Construction Cost Estimation Tool Guidelines (and spreadsheet)

Future SIBC Training

- Construction Perspective
 - Tentatively set for November 2015
- Web-based Training
 - 3 Modules: SIBC Part 1, Part 2, and Part 3
 - Each goes "live" with the associated webinars above
 - Module 2 will be available tomorrow at http://slideinbridgeconstruction.com

Accelerated Bridge Construction (ABC)

THANK YOU FOR YOUR PARTICIPATION!

For issues or questions regarding this training or the www.slideinbridgeconstruction.com website, please e-mail sibc@urs.com