

ABC - UTC | Webinar - January 23, 2020

Guy Mailhot, Eng., M. Eng., FCSCE, FEIC, Chief Engineer, Infrastructure Canada Marwan Nader, PhD, PE, Eng., Senior Vice President and Chief Engineer, T.Y. Lin International

New Samuel De Champlain Bridge, Montreal, Canada

PPP Project Agreement Costs (As of Bridge Opening)

Type of Costs	Costs (in billions of \$ CDN)
A) PPP Project Agreement Costs	\$ 4.212
B) DB Construction Costs B1) Samuel De Champlain Bridge Abutment to Abutment B2) Nuns' Island Bridge B3) Highway Components including Roads (freeways), Overpasses, Walls and Noise Abatement Barriers, etc.	<u>\$ 2.245</u>
C) Operating, Maintenance, Rehabilitation (OMR) Costs and Financing over 30 years (A-B)	\$ 1.967

Project Location

Project Description – 3.4 km (2.1 mi)

Project Description

- 60 m (197') in width
- 3-Corridor Design
 - 3 traffic lanes on Northbound and Southbound Highways (up to 4 lanes)
 - Transit corridor for Light Rail
 - Multi-use path for cyclists and pedestrians
- Life line bridge w/ 125-year design life

Project Context and the Need for ABC

- One of North America's Busiest Crossings
 - \$20 B CDN in Canada-U.S. trade crosses the bridge every year
 - 50 M vehicles per year
- Original Bridge (Built 1962)
 - Poor drainage system
 - Exposure to de-icing salt
 - Major rehabilitation works
- Maintenance Expense
 - More than \$300 M CDN over 6 years period from 2011-2016

Project Context and the Need for ABC

1986

First prestressed concrete girder repaired

1991 to 1992

 Replacement of the reinforced concrete deck by orthotropic steel deck

2011

 Federal Government announced replacement of a new bridge upon review of the feasibility studies

2013

 Reports indicated the old bridge was reaching the end of its useful life.
 Gov. of Canada announced that it would accelerate its replacement

Project Context and the Need for ABC

Oct. 2013

 JCCBI closes a traffic lane after the appearance of a flexural crack at mid-span of an edge-girder

Dec. 2013 / May 2014

 Installation of emergency super-beam followed by emergency modular truss

Feb. 2014

RFQ is issued followed by RFP in July 2014

Accelerated Bridge Construction in Mega Scale

Accelerated Bridge Construction (ABC) in Mega Scale

Design for Accelerated Bridge Construction

- Maximize use of modular construction
- Precast concrete elements; minimize cast-in-place
- Pre-fabricated steel elements with field bolting
- Avoid delays due to severe cold weather
- Prefabrication provides for better quality control
- Efficient construction schedule

Credit: @ThomasHeinser

Maximize Use of Modular Construction - Foundations

Approaches:

- 33 total approach piers:
 - 25 West Approach:
 - 6 cast-in-place (CIP) spread footings
 - 19 precast marine foundations
 - 8 East Approach:
 - 4 CIP spread footings
 - 4 CIP pile caps with
 8 1.2m (4') dia. cast-in-drilled hole
 (CIDH) piles

Cable-Stayed Bridge:

- 4 Total CSB piers and MST Tower:
 - W01/W02/E01: CIP pile caps with
 6 1.2m (4') dia. cast-in-drilled hole (CIDH) piles ea.
 - E02: CIP spread footings
 - MST: CIP footing
 - 2 pile caps (pods). Pods are linked with tie beams
 - 2 x 21 1.2m (4') dia. piles each pod

Heavy Lift Foundation Setting – Weight 600 ~ 1000 MT

- Custom-built floating installer
- 2-3 days per foundation (38 marine foundations)

- Pre-cast spread footing
- Sacrificial jacks for leveling / tremie concrete injection

Pier Bents

Pier Bents

- Prescribed architectural appearance per Definition Drawings
- Pier shapes are common to approaches and cable-stayed bridge
- Precast pier bent segments
- Post-tensioning tendons are used in pier legs
- Post-tensioning extends from W-frame down into footing loop tendons
- W-Frame anchored to piers via post-tensioning

Concrete Characteristics

(1 MPa = 145 psi, 60 MPa = 8702 psi)

Component	f'c	Characteristics	w/cm
Deck slab panels (cable stayed bridge)	70MPa	Precast	0.30
Deck slab panels (approach spans)	60 MPa	Precast	0.32
MST (Pylon) - shaft	60 MPa	Precast Lower/CIP Upper	0.30
MST (Pylon) – pile cap	35 MPa	Cast-in-Place (CIP)	0.38
Drilled shaft (deep foundation)	50 MPa	Tremie	0.38
Piers (columns – approach spans)	60 MPa (80 MPa)	Precast	0.32
Piers (footings – approach spans)	35 MPa	Precast	0.38

Pier Bents

Credit: BPDL

Pier Bents and Steel Pier Caps in Construction

Steel Pier Cap Erection – Lift Weight > 200 MT

Credit: Infrastructure Canada

Steel Pier Cap Center Splice

Pier Cap with Steel Center Splice

Weight ~450 MT

Pier Cap with Concrete Center Splice

Weight ~550 MT

Credit: Infrastructure Canada

Cable-Stayed Bridge

Cable-Stayed Bridge

Main Span Tower (MST)

- Post Tensioned CIP footing with CIDH piles
- Lower shafts: Inclined shafts with precast concrete segments
- Upper shafts: cast-in-place concrete segments
- Shafts are braced with a lower crossbeam and upper precast crossbeam "bow-tie"

MST Lower Shafts

- Precast segments
- Wt. = 77 MT max
- Hollow concrete box sections stacked atop another
- Post-tensioned
- Joints remain in compression under service loads

TYPICAL PRECAST SEGMENT WALL REINFORCING

MST Lower Shafts Precast Segmental Construction

- 44 precast lower tower leg segments
- Up to 3-4 segments erected per day
- Completed in 36 days

MST Lower Shafts - Epoxy Joint Mockup & Testing

- Air tightness test conducted 2 days after epoxy
 - No Leak at the joint validated with soap water
 - Pressure kept at 100 psi for 5 minutes with out any loss, as per PTI recommendation
 - Drilled core @ 45 deg. showed epoxy on all surfaces
 - Cores samples were tested for strength

MST Upper Shafts

- 15 cast-in-place upper shaft segments
- 1 lift cast every 2 weeks with jump forms

Credit: Infrastructure Canada

MST Upper Shafts - Link Beam

- Composite with tower segment
- Independent anchorages outside of tower
- Allows for modular construction

Link Beam - Integrated Shop Drawing

- 3-D integrated shop drawings
- Clash avoidance
- Initial investment in the design phase saves on construction time

Stay Cable

- 60 total stay cables
- Mainspan: 121-strand cables ea.
- Backspan: 127-strand cables ea.
- Stay is not grouted
- Corrosion protection provided by DSI:
 - Galvanized wire strand
 - Wax and Polyethylene (PE)-Coating
 - HDPE Sheathing
 - Water and airtight anchorage zones

Damping

- Every stay cable includes a twin tube hydraulic telescopic damper for vibration control
- Stay Cable Dampers are needed to mitigate the effects cause by the following sources of vibration:
 - Vortex shedding
 - Rain/wind induced vibrations (RWIV)
 - Galloping due to inclination
 - Wake galloping
 - Galloping due to ice accretion
 - Excitation from vibrations in other parts of the bridge
 - Buffeting from wind turbulences

Wind Tunnel Testing - Full Aeroelastic Model Test

 With existing Champlain bridge and construction tower crane

Stay Cable Testing

- Force Technology and National Research Council (NRC) –
 Canada
- Testing Program (samples double helix / 200mm (8") rings / 300 mm (12") rings:
 - Static dry tests
 - Passive-dynamic tests with simulated rain
 - Static tests with ice accretion
 - Ice accretion and de-icing tests

Superstructure

Superstructure - Composite Steel Girder, Precast Deck Panels

Steel Characteristics

Component	Grade/f _y
Uncoated Carbon Steel Reinforcement	500 MPa (72.5 ksi)
Stainless Steel Reinforcement	520 MPa (75.4 ksi)
Welded Wire Fabric	520 MPa (75.4 ksi)
Galvanized Bolts	A325/A325M Type 1
Structural Steel	350WT
High Performance Steel (HPS)	480WT

Superstructure – Fabrication in Spain

Superstructure – Precast Deck Panels

- All deck reinforcement Duplex Stainless Steel: EN 1.4362 (UNS S32304) – 520 MPa (75.4 ksi)
- No. of Panels: 1400 (CSB)
- No. of Panels: 9638 Total

- Shop 1 Northbound, Southbound panels 5 casting lines
- Shop 2 Transit corridor 3 casting lines
- Produced up to 50 panels per week

Superstructure – Precast Deck Panels

440 precast deck slab panels installed per week on-site

Accelerated Construction Methods – Large Segments

Credit: SSLC

Superstructure Erection - MS1-Segment - 850 MT

• 60m (196'-10") x 12.5m (41') segments

Superstructure Erection - MS1-Segment (Video)

CSB Construction Sequence

CSB Construction Sequence

CSB Construction Sequence – Original (MS15-E01)

CSB Construction Sequence – Option E" (MS11-MS12)

CSB Construction Sequence

Erection Analysis in RM: Option E"

Alternative Erection Scheme Implemented (2 Months Saved)

King Post Tower (11-01-2018)

King Post Tower (12-10-2018)

Alignment of MS11, MS12 (02-11-2019)

Credit: Infrastructure Canada

A Global Team

Effective Communication and Collaboration (Cloud Based)

- Change management Design Quality Plan
- Cloud-based electronic document control system accessible by all design team members from different entities
- Regular scheduled team meetings
- Communication protocols
 - multilingual team
- Quality training
- Expedited reviews and comment resolutions
- CADD integration
- Streamlined communication across different time zones

Accelerated Bridge Construction (ABC) in Mega Scale (Recap)

Design for Accelerated Bridge Construction

- Maximize use of modular construction
- Precast concrete elements; minimize cast-in-place
- Pre-fabricated steel elements with field bolting
- Avoid delays due to severe cold weather
- Prefabrication provides for better quality control
- Efficient construction schedule

Credit: @ThomasHeinser

Takeaways

- Meeting Architectural Vision and satisfying community expectations via Definition Design within a Design-Build, PPP framework. This method worked well
- Heavy Precast Pier Footings successfully placed using Floating Pier Installer despite strong river currents
- Sacrificial Hydraulic Jacks for levelling and use of green joint (above water) to ensure proper final alignment proved successful
- Specialized training required in Quebec for use of stainless steel rebar (rust staining, bar bending, contact between dissimilar materials, etc.)
- Development of special mixes were key in achieving a successful outcome (self-compacting concrete, ternary cement mixes, use of fly ash)
- Environmental protection presented key challenges particularly during aquatic excavation to rock for marine footings (turbidity curtains, winter conditions)
- Institute for Sustainable Infrastructure (ISI) targeting Envision Bronze Award, but higher Platinum Level Award achieved – under DB/PPP project delivery method – confirming that such requirements can be embedded within a PPP or DB contract

Thank you. Questions?

Canadä^{*}

TY:LININTERNATIONAL

