# PREFABRICATED BARRIER SYSTEM UTILIZING UHPC CONNECTIONS # Quarterly Progress Report For the period ending May 31, 2020 Submitted by: Abbas Khodayari, Graduate Research Assistant Islam Mantawy, Ph.D., Research Assistant Professor Atorod Azizinamini, Ph.D., PE., Director of ABC-UTC # Affiliation: Department of Civil and Environmental Engineering Florida International University Miami, FL Submitted to: ABC-UTC Florida International University Miami, FL #### 1. Introduction Barriers are one of the essential components in bridges to ensure safety for vehicles and redirect the errant vehicles passing the bridge. Several attempts were taken place to develop prefabricated barriers with connection to the bridge deck using post-tensioned threaded rods and stainless-steel bars. However, those connections are associated with higher cost and durability issues. A new prefabricated barrier system utilizing UHPC connection to deck overhangs is proposed herein. A single-slope prefabricated barrier with grooves will be connected to deck overhang with dowels extended vertically from its end. The grooves in addition to 1 in. leveling pad will be filled using UHPC to connect the prefabricated barrier to bridge deck overhang. The use of UHPC allows for shorter development length of overhang extended dowels resulting in easy erection and simplification in reinforcement details of the barrier itself. Under this project, component and large-scale testing will be conducted along with extensive finite element models to ensure that the proposed prefabricated barrier system with UHPC connections meets TL-4 requirements. ### 2. Problem Statement One durability issue regarding cast-in-place (CIP) barriers is the early-age cracking due to temperature gradients and curing conditions which can subject them to excessive risk of corrosion, leading to costly repair projects. In order to avoid this undesired phenomenon, a new detail is being developed using Ultra-High Performance Concrete (UHPC) to connect the prefabricated barriers to deck overhangs which can significantly reduce on-site construction time and enhances work zone safety. # 3. Objectives and Research Approach The main objectives of this project are: - a) Development of new connections utilizing UHPC to connect prefabricated barriers to bridge deck considering geometry and fit-up issues. - b) Conducting detailed finite element modeling on the proposed barrier system and connections. - c) Conducting a proof of concept experimental work on component test for the proposed prefabricated barriers with UHPC connections. - d) Conducting a proof of concept experimental work on large test for the proposed prefabricated barriers with UHPC connections. - e) Assessment of the performance of the prefabricated barriers with UHPC connections compared to the most common barrier systems. - f) Developing detailed finite element models for the proposed prefabricated barriers with UHPC connections for better understanding of system performance, therefore, extending the study to analyze other specimens which will not be possibly tested. ## 4. Description of Research Project Tasks Description of tasks carried out to date are as following. #### Task 1- Development of new connections using UHPC for Prefabricated Barrier Systems In this task, a single-slope prefabricated barrier with grooves was considered to be connected to deck overhang with dowels extended vertically from its end. The vertical bars in the barrier will be spliced to the existing dowels in the deck using UHPC in the grooves which provides a continuous connection along the length of the barrier. Progress: This task is completed, and the connections are designed and analyzed as shown in Figure 1. The researchers adopted a single slope barrier which passed crash testing at Midwest Roadside Safety Facility at the University of Nebraska Lincoln (UNL) using cast-in-place. The barrier will be a prefabricated unit and will be connected to bridge overhang using UHPC connection by splicing the vertical reinforcement in the barrier with dowel reinforcement extended from the bridge overhang forming U-shape connection as shown in Figure 1. Figure 1 The CIP and Proposed connection between prefabricated barrier and deck overhang utilizing UHPC. # Task 2- Finite Element Analysis of the Proposed Prefabricated Barrier System Progress: This task is completed and the design of test specimens are finalized. In this task, a series of nonlinear finite element (NLFE) analyses were performed to evaluate the performance of the proposed connection. The CIP and prefabricated barrier system which were placed at the edge of 60-in long bridge overhang, were modeled in ATENA software and the results are presented hereinafter. The critical length of yield line failure pattern, $L_c$ , for the CIP barrier, was calculated as 13.2 ft using yield line approach recommended by AASHTO. The length of the barrier should be longer than $L_c$ to ensure that yield line failure mechanism would develop. For this study, it was found that longitudinal length of 20 ft is suitable to effectively simulate the estimated yield line failure pattern which is almost equal to the length of the deck resisting transverse load ( $L_c + 2H$ ). The focus of this task is to investigate the structural performance of the proposed prefabricated barrier systems subjected to transverse static loading according to Test Level Four (TL-4) based on AASHTO MASH. A half model is adopted due to symmetrical load conditions and boundary conditions, as shown in Figure 2. Displacement controlled load is applied at nodes on the middle of the loading plate. The effect of the loading height was also investigated. Figure 2 FE model representing static test for the CIP and prefabricated barrier. After reaching the cracking moment of the deck, $M_{cr} = 1374$ kip-in, the stiffness of the system reduces significantly, and the damage started to occur in the barrier. This remains until the barrier reaches the ultimate capacity along with the development of yield line failure pattern. The lateral load-deflection curves of the CIP barrier under different loading heights are shown in Figure 3. The nominal capacity of the barrier was calculated as 56 kip using yield line method which is higher than the 50 kip obtained from the Finite Element Modeling. Figure 3 Load-Deflection Curves for the CIP barrier system under different loading heights. Figure 4 shows the comparison between the load-deflection curves of the CIP and prefabricated barrier systems under loading at the height of 33 in. Figure 4 Comparison between the Load-Deflection Curves for the CIP and prefabricated barrier systems $(H_e = 33 \text{ in}).$ The higher capacity of the UHPC with respect to CIP barrier can be attributed to shifting the yield line in the barrier about 6 in upward, leading to smaller $L_c$ in prefabricated barrier (Figure 5). Figure 5 Development of the yield line failure pattern in CIP and UHPC based connections. The results of the FE show that the UHPC connection will perform in a more desirable pattern with less damage in the deck if compared to CIP barrier while the barrier exhibits a desirable yield line failure pattern. #### Task 3- Component Level Experimental Work In this task, experimental work will be conducted on component level to verify the outcome of Task 2. Two 3 ft long specimens representing CIP and prefabricated barrier will be tested in a cantilever failure mode as shown in Figure 6. Figure 6- Test setup for the component level experimental work. Progress: Not started. #### Task 4– Large Scale Experimental Work In this task, a full-scale specimen of the proposed prefabricated barrier system will be conducted to verify the outcome of tasks 2 and 3. Progress: Not started. #### Task 5- Assessment of the Performance of the Proposed Prefabricated Barrier System In this task, full performance assessment of the proposed prefabricated barrier system will be conducted in addition, a comparison between the proposed prefabricated barrier system with the most common prefabricated barrier system. Progress: Not started. #### Task 6 – Final Report In this Task, Full assessment of the findings from Task 1 throughout Task 5 will be conducted and a report will be published including design recommendations of the proposed prefabricated barrier system with UHPC connections. Progress: Not started. # 5. Expected Deliverables Final report, journal articles, design guidelines, and five-minute video presentation will be the expected deliverables # 6. Schedule | Item | % Completed | |--------------------------------------------------|-------------| | Percentage of Completion of this project to Date | 30% | | Research Task | 2020 | | | | | | | | | | | | | | 2021 | | | | | |-------------------------------------------------------------------------------------|----------|---|---|---|---|---|---|---|---|---|---|---|---|---|------|----------------|---|----------|--| | | J | F | M | A | M | J | J | A | S | 0 | N | D | J | F | M | A | M | J | | | Task 1- Development of new connections using UHPC for Prefabricated Barrier Systems | | | | | | | | | | | | | | | | | | $\vdash$ | | | Task 2- Finite Element Analysis of the Proposed Prefabricated Barrier System | | | | | F | | | | | | | | | | | | | F | | | Task 3- Component Level Experimental Work | $\vdash$ | | | | | | | | | | | | | | | | | F | | | Task 4- Large Scale Experimental Work | $\vdash$ | | | | | | | | | | | | | | | | | F | | | Task 5- Assessment of the Performance of the Proposed Prefabricated Barrier System | $\vdash$ | | | | | | | | | | | | | | | | | F | | | Γask 6 – Final Report | $\vdash$ | | | | | | | | | | | | | | | | | F | | | | | | | | _ | | | | | | | | | | Prop | osed<br>pletec | _ | _ | | # 7. Reference • American Association of State Highway and Transportation Officials. (2017). *AASHTO LRFD bridge design specifications*.