DESIGN GUIDANCE FOR UHPC CONNECTIONS OF PRECAST GIRDERs MADE CONTINOUS FOR LIVE LOAD

Quarterly Progress Report
For the period ending November 30, 2021

Submitted by:
PI - Royce W. Floyd, P.E., S.E., Ph.D.
Co-PI - Jeffery S. Volz, S.E., P.E., Ph.D.
Graduate Student – Zachary Tiry

School of Civil Engineering and Environmental Science
The University of Oklahoma
Norman, OK

Submitted to:
ABC-UTC
Florida International University
Miami, FL
1. Background and Introduction

Ultra-high performance concrete (UHPC) is a relatively recent advancement in cementitious composite materials with mechanical and durability properties which far exceed those of conventional concrete and which has potential for multiple applications in accelerated bridge construction (ABC). One such application is connection of precast, prestressed concrete bridge girders to make spans continuous for live load. Use of these continuity connections allows for construction of bridges using precast elements while also allowing for structural benefits of live load continuity and durability benefits of reducing the number of bridge deck joints. While design of conventional concrete continuity joints is well known and frequently used in practice for new construction, little guidance exists on design of these connections using UHPC or using UHPC to retrofit simple span bridges for live load continuity. UHPC has high tensile strength, excellent bond strength to substrate concrete, and short required development length for steel reinforcement making it an ideal material for these continuity connections. The current project will extend previous research by the PIs on structural behavior of UHPC continuity connections to produce design guidance. Information and data from the literature will be synthesized with current design practice to extend design guidance beyond the limitations of the PIs’ previous work. The primary output of the project will be the Guide for Design of UHPC Continuity Connections, but educational materials and design examples will also be produced as part of the project.

2. Problem Statement

Use of continuous bridge spans can reduce the required section size or increase capacity for a given size structural element. However, accelerated bridge construction (ABC) typically relies on precast components that can be quickly assembled on site. Establishing continuity for precast elements leads to resistance of live loads beyond the self-weight of the girders. Eliminating interior joints by establishing continuity can improve the durability, appearance, and riding quality of the bridge in addition to reducing maintenance costs (Freyermuth 1969). Some research (Oesterle et al. 1989) has disputed the effectiveness of full continuity connections, but in general the literature indicates that the connections do provide structural benefits and the system of precast beams made continuous for live load is used by multiple state DOTs.

Conventional connections of precast girders made continuous for live load consist of either individual linkage blocks placed between girder ends or continuity diaphragms extending the full width of the bridge. Tension from negative moment present over the pier is resisted in the connections by reinforcing steel placed in the bridge deck (Miller 2004). Prestressing strands and/or reinforcing steel are typically extended from the beam ends into the connections to provide positive moment resistance for restraint induced moments caused by creep and shrinkage of the bridge girders. If not detailed and constructed properly, conventional continuity connections tend to crack from the bottom due to moments resulting from creep and shrinkage effects (see Figure 1) (Saadeghvaziri et al. 2004, Miller 2004). This cracking has been shown to reduce the effectiveness of the continuity joint, leading to varying levels of continuity from fully continuous to behavior like that of a link slab (Saadeghvaziri et al. 2004, Miller 2004) which does not provide the benefits of full live load continuity and can lead to inadequate bridge capacity if the bridge spans are designed to be continuous. Some states have discontinued the use of this system due to cracking in the continuity connections. On the other hand, retrofitting a bridge originally designed as a series of simple spans to be continuous can increase the load
carrying capacity. While age of the girders at the time of placement is a major consideration for performance of continuity joints due to the impact of creep and shrinkage (Saadeghvaziri et al. 2004), other factors such as cracking resistance of the joint material, reinforcement development length, and bond of the joint material to the girder concrete can be important considerations for design of continuity connections.

Figure 1. Detail for a typical continuity linkage block used in Oklahoma (left) and photo of a linkage block exhibiting cracking from restraint induced moments (right)

Ultra-high performance concrete (UHPC) is a relatively recent advancement in cementitious composite materials with mechanical and durability properties which far exceed those of conventional concrete. UHPC has been successfully used in multiple applications related to connection of precast concrete bridge components and is frequently used in ABC construction due to its superior bond development characteristics with steel reinforcement, ease of placement, and long-term durability compared to conventional concrete. In general, joints replaced or connections made using this material will have better durability, better resistance to impacts and abrasion, and will allow for a smaller quantity of material to be used while still obtaining adequate load transfer between connected components. Using UHPC allows for small, simple connections without the need for post-tensioning (when connecting precast elements) or large amounts of field-cast concrete (Graybeal 2010). Joints cast using UHPC also tend to behave more like monolithic construction than typical field-cast connections. The material characteristics, steel and concrete bond characteristics, flowability, and required quality control testing differ from conventional materials and require consideration in design for effective use of the material in precast girder continuity joints.

Extensive investigation of the properties of UHPC for use in bridge and other infrastructure components has been conducted by multiple organizations (e.g., Graybeal 2011, Graybeal 2014). The Federal Highway Administration (FHWA) defines UHPC as “a cementitious composite material composed of an optimized gradation of granular constituents, a water-to-cementitious materials ratio less than 0.25, and a high percentage of discontinuous internal fiber reinforcement. According to the FHWA definition the mechanical properties of UHPC include compressive strength greater than 21.7 ksi (150 MPa) and sustained postcracking tensile strength greater than 0.72 ksi (5 MPa), however other definitions of UHPC class materials do not require the high compressive strength. Non-proprietary UHPC mixtures meeting all or some of the required characteristics have become more common in recent years. UHPC has excellent durability performance due to its discontinuous pore structure compared to conventional and high-performance concretes (Graybeal 2011). The post-cracking tensile strength is such that it can be included in design of structural elements and the steel fiber
reinforcement can keep most cracks that form during normal service very small in width. Bond strength of mild steel reinforcement cast in UHPC (e.g. Graybeal 2010, Swenty and Graybeal 2012), bond strength of prestressing strand cast in UHPC (e.g. John et al. 2011, Graybeal 2006) and bond strength of UHPC to conventional concrete (e.g. Hussein et al. 2016, Carbonell et al. 2014, Tayeh et al. 2013) are superior to behavior of conventional concrete materials.

While the material characteristics of UHPC are very desirable for use in this application, limited research has been conducted specifically focused on examining the behavior of UHPC continuity joints. Previous research sponsored by ODOT (Casey 2019) and others (Rallabhandhi 2016) showed improvement in cracking resistance and overall behavior for UHPC connections of precast girders in high moment regions. Casey (2019) also indicated significant capacity increase for girder systems made continuous with UHPC retrofit connections. An implementation project using UHPC to replace existing linkage blocks that had cracked was completed in Oklahoma and is currently being monitored by the authors of this proposal. Pre-repair and post-repair load tests were conducted and the results indicate that continuity was effectively reestablished (Looney et al. 2021).

Previous research has shown that connections of precast girders for live load continuity using UHPC are a promising alternative to conventional connections for new construction and for retrofit solutions. Structural design and analysis of UHPC components can be accomplished using procedures similar to reinforced concrete if typical assumptions are modified to reflect the known structural behavior of UHPC. FHWA has published guidance on design and implementation of field-cast UHPC connections (Graybeal 2014). No design guidance is available specifically on using UHPC for live load continuity connections, however an in-progress project on UHPC connections in deck bulb-tee girder bridges sponsored by NCHRP (2018) has a partial focus on continuity connections. More comprehensive design guidance for continuity connections made with UHPC is needed for a variety of precast concrete bridge configurations.

3. Objectives and Research Approach

The objectives of the current project are to synthesize existing data and research on UHPC and UHPC connections to develop design guidance for UHPC connections of precast bridge girders made continuous for live load and to produce training materials for UHPC continuity joints.

The current project consists of evaluation and synthesis of existing test data and current design practice to develop design guidance for UHPC connections of precast concrete girders over a pier to create live load continuity. The existing provisions in the AASHTO LRFD Bridge Design Specifications (2017) and results from the literature on UHPC material property and structural behavior will be used as the basis for design guidance. A detailed literature review will be conducted on design of conventional concrete continuity joints and UHPC structural connections in other applications followed by survey of standard practice by state DOTs utilizing continuity connections. The collected information will be used to propose procedures similar to the AASHTO LRFD Bridge Design Specifications guidance for conventional concrete connections (2017).
4. Description of Research Project Tasks

The following is a description of tasks carried out to date.

Task 1 – Literature Review

A comprehensive literature review including U.S. and international sources will be conducted to identify previous research on precast girders made continuous for live load, UHPC material properties relevant to continuity connection design, performance of different UHPC mixtures, and other types of UHPC connections. Specific attention will be paid to reinforcing bar/prestressing strand development within the joint, bond to conventional concrete, and tensile stress development within the continuity joint.

Work was begun on examining previous research on continuity connections collected from the literature by the project PI. The student working on the project was not able to start until May 2021 at which point he took over this task from the PI.

The student has since compiled sources on design, testing, and construction practice from select states that have conducted similar studies. Of the many states investigated, Ohio, Pennsylvania, and New York have provided some of the most promising literature thus far. Selected studies include UHPC performance in several bridge applications across multiple states. Previous research collected on testing and modeling of conventional concrete continuity connections examined multiple configurations and presented mixed results on the effectiveness of these connections. Additionally, literature focused on UHPC characteristics relevant to design of live load continuity connections has been examined. This includes primarily tension and bond strengths of different UHPC materials and how those characteristics can be incorporated into an efficient connection detail.

Task 2 – Examination of Current Design Practice

Current practice by U.S. state DOTs and in other countries relative to precast bridge girders made continuous for live load will be examined utilizing publicly available standard drawings and project information along with contacting representative state DOTs where this type of connection is used frequently. The project advisory panel will be consulted regarding DOT contacts for this task. These specific DOT personnel will be contacted for interviews rather than distributing a survey. Typical bridge configurations utilizing precast girders made continuous for live load, typical girder types made continuous for live load, prevalence of linkage blocks and continuity diaphragms, and typical details of these connections will all be examined. Any practices that have led to problems in the past will also be examined to identify how UHPC can best address these issues.

The student working on this project continued examination of the existing AASHTO design provisions for conventional concrete connections of precast beams for live load continuity. The student continued collecting and examining code provisions on structural design with UHPC from both U.S. and international sources, specifically focused on modeling tension, compression, and bond behavior of UHPC to be used in the joint design process.

The collection of standard drawings regarding continuity connections using conventional concrete has continued during the current quarter. Records from several state DOTs have been examined. The student working on the project has compiled spreadsheets to document useful design parameters that will serve as reference during later phases. Such parameters include
connection style, positive moment steel, connection dimensions, and prestressing detail. Sources have been prioritized based on their relevance and breadth of technical detail. It was discovered during review of the standard drawings that many important design details are listed “as specified by the engineer”. In order to collect data on these items, the student has identified a series of existing bridges with continuity diaphragms cast using conventional concrete. The construction documents from these bridges are to be collected and used to further understand the current practice of establishing live load continuity.

The search was also widened to include UHPC connections in general to identify typical details for reinforcing bar arrangements and joint widths. The primary applications of UHPC examined include transverse joints between precast deck panels, longitudinal closure joints, and link slabs.

Task 3 – Synthesis of Available Data and Current Design Practice for Design Guidance

Information identified in Tasks 1 and 2 will be used to reconcile differences between AASHTO LRFD design provisions for continuity joints, current construction practice, results from completed structural testing, and material behavior of UHPC. Care will be taken to complement and expand design guidance produced by current projects underway sponsored by NCHRP. Any gaps in knowledge will be identified for recommendation of additional work or limitations for the proposed Guide. Stress redistribution from the joint into the girders and required changes in design of the girders themselves will also be considered.

Throughout the investigation the primary goal of the student has been to provide design guidance specific to UHPC. Therefore, current design documents have been collected to use during future tasks. Such documents include AASHTO LRFD Bridge Design Specifications, DOT specific design specifications, and technical papers on the characteristics of UHPC and conventional concrete. The student is to use these documents to determine how the current design of conventional concrete diaphragms can be optimized by considering the superior material properties of UHPC. Standard drawings and those from completed bridges collected from state DOTs were examined to identify items for which additional design guidance will be needed when UHPC is used instead of conventional concrete.

Task 4 – Development of Design Examples and Training Materials

Two design examples will be prepared for two different bridge configurations that will discuss selection of the connection system used along with detailed design. Voice-over PowerPoint presentations will be created summarizing the proposed design guidance and the design examples.

Initial work on this task was conducted in the form of identifying in-service bridges that could be used as design examples.

Task 5 – Reports and Guide for Design of UHPC Continuity Connections

Quarterly progress reports and a final report in Microsoft Word and ADA compliant Adobe Acrobat pdf will be provided at the end of the project year. The proposed guide will summarize design guidance synthesized as part of Task 3. This will include discussion of bridge types and configurations appropriate for UHPC continuity connections, selection of individual
linkage blocks or full depth diaphragms, sizing of continuity joints, selection of reinforcement, and reinforcement detailing. Consideration of continuity connections as a potential retrofit connection will also be considered. Additional guidance will be provided for construction and quality control testing needed for UHPC continuity joints.

The current progress report is the third for the project and documents activities from September 1, 2021 to November 30, 2021.

5. Expected Results and Specific Deliverables

This project will develop design guidelines for UHPC connections of precast elements to make them continuous for live loads. This includes guidance for both new construction and retrofit to increase bridge capacity. Guidelines will be based on existing guidance for conventional concrete connections and completed research sponsored by the Oklahoma DOT and others.

As new construction methods are implemented and a greater emphasis is placed on extending life of existing bridges, continuity connections made with UHPC will become more important. A Guide for design of these elements will be needed by design engineers and readily available education materials will be necessary for the research results to make it into practice.

6. Schedule

Progress of tasks in this project is shown in the table below.

<table>
<thead>
<tr>
<th>Item</th>
<th>% Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Completion of this project to Date</td>
<td>45%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Research Task</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>A</td>
</tr>
<tr>
<td>1. Literature Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>M</td>
</tr>
<tr>
<td>2. Current Design Practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>J</td>
</tr>
<tr>
<td>3. Synthesis of Research and Practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>4. Design Examples and Training Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>7. Report and Guide</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Work Performed

Work to be Performed
7. References


16- Saadeghvaziri, M., Spillers, W., and Yin, L. (2004). Improvement of Continuity Connection over Fixed Piers, FHWA-NJ-2004-017, Federal Highway Administration, Department of Transportation, Newark, NJ.
