

	Ma	terial Properties		
Property	Test Method			
Flowability	ASTM C1437			
Compressive Strength	ASTM C39 ASTM C109			CH25
Modulus of Elasticity and Poisson's Ratio	ASTM C469			
Splitting Tensile Strength	ASTM C496			
Flexural Strength	ASTM C78/C1609			
Direct Tensile Strength	FHWA (Graybeal and Baby, 2013)			
Total and Drying Shrinkage	Embedded VWSG ASTM C157			
Compressive Creep	ASTM C512	ci ci		
Set Time	ASTM C403		A CONTRACTOR	
Freeze-Thaw Resistance	ASTM C666		1 MARINE COL	
Rapid Chloride Ion Permeability	ASTM C1202		A Share	
CALLOGIY COLLEGE OF ENGINEERING CIVIL ENGINEERING &	ENVIRONMENTAL SC	IENCE		

UHPC

- FHWA Definition
 - Compressive strength greater than 18 ksi
 - Post-cracking flexural strength of 720 psi
- ACI Definition
 - Minimum compressive strength of 22,000 psi
 - Tensile ductility in the form of elastic-plastic or strainhardening behavior under uniaxial tension
- General Definition
 - Compressive strength of 18 30 ksi
 - Minimum post-cracking strength of 700 900 psi

GALLOGLY COLLEGE OF ENGINEERING CLUVIL ENGINEERING & ENVIRONMENTAL SCIENCE

offecty inder after compression testin

UHPC

- High flowability
- Very low to negligible permeability
- Minimal freeze-thaw susceptibility
- Durability
- Impact resistance
- Specified toughness
- · Fibers to achieve specified requirements

10

Basic Pro	oerties	
 Typical properties of a widely studied 	UHPC (Graybeal 2014)	
Characteristic	Average Result	
Density	155 lb/ft ³ (2.480 kg/m ³)	
Compressive Strength (ASTM C39, 28-Days)	24 ksi (165 MPa)	
Modulus of Elasticity (ASTM C469, 28-Days)	7,000 ksi (48 GPa)	
Direct Tension Cracking Strength	1.2 ksi (8.5 MPa)	
Split Cylinder Cracking Strength (ASTM C496)	1.3 ksi (9.0 MPa)	
Prism Flexure Cracking Strength (ASTM C1018)	1.3 ksi (9.0 MPa)	
Long-Term Creep Coefficient (ASTM C 512,11.2 ksi (77MPa) Stress)	0.78	
Long-Term Shrinkage (ASTM C 157, initial reading after set)	555 με	
Total Shrinkage (embedded vibrating wire strain gage)	790 με	
Coefficient of Thermal Expansion (AASHTO TP60-00)	8.2 x 10 ⁻⁶ in./in./°F (14.7 x 10 ⁻⁶ in./in./°C)	
Chloride Ion Permeability (ASTM C1202, 28-day test)	360 coulombs	
Chloride Ion Permeability (AASHTO T259, 0.5 in. (12.7 mm) depth)	<0.10 lb/yd3 (<0.06 kg/m3)	
Scaling Resistance (ASTM C672)	No scaling	
Abrasion Resistance (ASTM C944 2x Weight, ground surface)	0.026 oz. (0.73 g) lost	
Freeze-Thaw Resistance (ASTM C666A, 600 cycles)	RDM = 99%	
Alkali-Silica Reaction (ASTM C1260, tested for 28 days)	Innocuous	
GALLOGUY COLLEGE OF ENGINEERING CIVIL ENGINEERING & ENVIRONMENTAL SCIENCE		анаах 12

<section-header><section-header><complex-block><image><image><image><image><image>

Proportions
2/3
1/6
1/6
0.23
1.0
21.0

Sample UHPC Formulation

40

Non-Proprietary UHPC Mix Development

Series J Mixes	UHPC 1 (J8)	UHPC 2 (J3)	UHPC 3 (J13)
Type I Cement, lb/yd ³	1179.6	1179.6	786.4
Type III Cement, lb/yd ³	0	0	196.6
ly Ash, lb/yd³	294.9	0	0
lag Cement, lb/yd ³	0	589.8	786.4
ilica Fume, lb/yd ³	196.6	196.6	196.6
VCAS™, lb/yd³	294.9	0	0
v/cm	0.2	0.2	0.2
ine Masonry Sand, lb/yd ³	1966	1966	1966
iteel Fibers, lb/yd ³	255.2	255.2	255.2
iteel Fibers, %	2.0	2.0	2.0
Glenium 7920, oz./cwt	15.77	15.77	14.88
			a possible a
dgly college of engineering /IL ENGINEERING & ENVIRONM! iversity & oklahoma	ENTAL SCIENCE		

Three (3) Most Promising Mixes for Fiber Addition and Heat Curing

Qı

