

First U.S. Bridge with 100% UHPC Superstructure: Michigan's Bricker Road Bridge over Quackenbush Drain

William Hazelton, PE

Managing Director, St. Clair County Road Commission, Michigan

Sherif El-Tawil, PhD, PE, F.ASCE, F.SEI Co-Founder, HiPer Fiber, LLC Antoine E. Naaman Collegiate Prof. of Civil Eng.

HIPER FIBER

U. of Michigan, Ann Arbor, MI

Michigan Engineering

University of Michigan College of Engineering

The History

- UHPC usage in St. Clair County, MI, since at least 2017
- Bricker Road Bridge
 project was Funded in Part
 by NCHRP through a grant to
 HiPer Fiber, LLC

Bricker Road bridge over the Quackenbush Drain

- Existing Bridge: Dual 120"x80" steel arch pipes
- Detour Route: 3 Miles
- 100-Year Flow: 290 CFS
- ADT: 300 vehicles per day with 8% commercial
- Design: Road Commission Staff with consultant assistance (TEG Engineering)
- Guardrail: 25' Long Span, Type B Rail, with Standard Approach Terminal Endings
- Abutments: Pre-cast Redi-Rock with Strip Footing
- Approaches: Concrete
- Site Construction: 4 weeks, starting mid-August
- Deck: Finished with Epoxy Overlay

Bricker Road bridge over the Quackenbush Drain

First Place Award Winner in the Short Span Bridge Category: Third International Interactive Symposium on Ultra High Performance Concrete (3IISUHPC)

'A Small Bridge with Big Implications': Bricker Road bridge over the Quackenbush Drain, St. Clair County, Michigan, USA

그 그 ㅋㅋㅋㅋㅋ

What is UHPC?

- It is a class of steel fiber reinforced cementitious materials with a suite of enhanced properties:
 - Fresh mix characteristics
 - Mechanical properties
 - Durability properties
- There is no agreed upon definition for UHPC
- Cementitious material with compressive strength > 150 MPa (21.7 ksi)

50 mm

10 mm

What gives UHPC its Unique Properties?

- High packing density
 - Achieved by carefully controlling the size and distribution of the constituent particles
- Discontinuous pore structure
 - Results from the uniformity of the matrix
 - Prevents water from entering the material, leading to its exceptional durability properties.
- Presence of steel fibers

Fibers are Critical for UHPC

- Fibers 'hold' the material together
- Fibers promote strain hardening tensile behavior
- Optimal UHPC response is achieved by carefully tailoring the fiber-matrix bond characteristics
 - <u>Too high</u>: promotes early fiber breakage - brittle behavior
 - <u>Too low</u>: allows fibers to pull out easily - limited contribution
 - Must be just right!

A cubic yard with 2% fibers by volume contains 37 million fibers! That's 300 miles of wire chopped into ½ inchofibers

Strain Hardening Response in Tension

Service Conditions

In 2023: AASHTO APPROVED UHPC GUIDE SPECS BY FHWA

Kansas City, Missouri May 21–25, 2023 bridges.transportation.org

2023 COMMITTEE ON BRIDGES AND STRUCTURES ANNUAL MEETING

Will broaden UHPC usage in the US <u>AND</u> Impose performance requirements on tensile UHPC behavior: $\varepsilon_{t,loc}$

NCHRP 20-30/IDEA 235 : High Bond Steel Fibers for Ultra High Performance Concrete (UHPC)

- Project awarded to HiPer Fiber, LLC
- Objectives:
 - 1. Investigate a new type of steel fiber that is highly effective in reinforcing UHPC
 - 2. Assess the effect of the new fibers on composite UHPC properties through material testing
 - Conduct a demonstration project on an actual bridge to showcase the potential of the new technology Bricker Road Bridge

Traditional

Smooth Surface

AT IN A PARTY OF

Type X - HiPer Steel Fibers Compliant with the Buy America Act (BAA) Made in the USA by HiPer Fiber, LLC, in Michigan Commercially available in the US Type X

Striations

Demonstration Project Parameters

- Project was a <u>total bridge</u> replacement
- 23.7' span by 36.0' width
- New precast block abutments & wingwalls
- New road approaches
 - Concrete Paving
 - New Guardrail
- Triple Tee UHPC deck panels
 - Truck mixed open-design UHPC
 - Precast & Cured at ADL's plant (a local precaster)
 - Bridge assembled in field by County work force
- Used Type X striated steel fibers from HiPer Fiber (as part of the NCHRP-IDEA 235 Project)
 - However, you can utilize smooth steel fibers in lieu of Type X

Open Recipe UHPC Components Developed for Michigan DOT in 2014

Material (Weight in pounds)				
Cement Blend	Mix A ¹	Mix B ¹	Mix C ¹	Mix D ¹
Portland Type 1L	653			
Slag Cement	653			
Silica Sand				
Sand I	398	396	395	394
Sand II	1590	1586	1582	1577
Silica Fume	327			
Water	276	272	268	264
High Range Water Reducer	20	26	33	39
Steel Fibers	265			

Resistance <u>6-|[</u> Thaw I RILEM Freeze-

est hloride \sim \bigcirc \bigcirc **U** \geq Rapid (ASTN

Mixing Protocol

- Dry mix for **15 minutes** (cements, silica fume, sands including loading)
- Add water and HRWR over 1-2 minutes
- Wait for turnover (fluidity), which usually occurs within **5 minute**s
- Mix another 5 minutes after turnover
- Add fibers gradually over 10 minutes
- Mix for 10 minutes then cast

• VIDEO

Compressive Test Results

Direct Tension Test Results

Design Parameters

Test Parameters

Assumed Design Parameters

- f_c' = 27.5 ksi
- $\varepsilon_{cu} = 0.005$
- E = 8750 ksi
- f_t = 1.82 ksi
- $\epsilon_{t,loc} = 0.0043$ f_v = 60 ksi

- $\varepsilon_{cu} = 0.004$
- E = 7500 ksi

$$f_t = 1.15 \text{ ksi}$$

$$\epsilon_{t,loc} = 0.0025$$

f_v = 60 ksi

Assumed Material Properties

Moment Capacity: FHWA Method

Shear and Punching Shear Capacity

Shear

$$V_{UHPC} = \gamma_u f_{t,loc} b_v d_v \cot \theta$$

- Based on the Modified Compression Field Theory
- No stirrups required

Punching Shear

- No guidance available
- Conservative model showed 10x capacity

Bricker Road bridge over the Quackenbush Drain

Novel Ribbed Deck Profile

Measured Strength Data

Pour Date	Curing Time (days)									
	3	4	5	7	10	11	14	28		
12-Jul	15.1			20.2				25.0		
14-Jul			16.7	20.6				23.4		
15-Jul		17.6			20.7			23.5		
18-Jul						19.1	20.2	24.1		
19-Jul					18.9		22.4	23 7		
Average	15.1	17.6	16.7	20.4	19.8	19.1	21.3	23.9		

Construction Process and Lessons Learned

Forms ready for casting

an.

-

5

6

-

Loading sand

Adding water and HRWR

Adding steel fibers

PED//IE

Casting UHPC

Casting UHPC

Finished Panel

ASE

Field cast closure pours

Superslim UHPC replacement deck panel

Ultra slim, ultra durable bridge Weight savings about 2/3 (67%)

Substantial Short Term Savings

- Reported by County (Michael Clark and Bill Hazelton)
- MDOT 2022 Scoping Estimate Worksheet: \$560,000
- St. Claire County cost: \$379,000
 - Includes road work, new abutments & UHPC panels plus county labor & equipment
- Short Term Savings: \$181,000 (32.3%)
- Long Term Savings: Discussed Later
- Many lessons learned

First bridge in the US with UHPC Deck Composite Tub Girders: Mostetler Road over Mostetler Creek Bridge - 2022

Clare County Bridge (Dewayne Rogers) First bridge in the US with Open Recipe UHPC Deck Composite Tub Girders

M

Clare County Bridge (Dewayne Rogers) First bridge in the US with Open Recipe UHPC Deck Composite Tub Girders <u>**Guy Nelson</u>**: The installation was also made more efficient by the light weight of the UHPC/PBTG PBU's. The completed PBU's required only a third of the concrete in a conventional bridge superstructure, and less than a quarter of the weight of a concrete PBU.</u>

100-year maintenance-free service life

Substantial Short Term Savings

- MDOT bridge worksheet cost is \$788,000
- Clare County bridge cost \$534,000
 - Includes guardrail, paving, and epoxy overlay
- Short Term Savings: \$254,000 (32.2%)
- Long Term Savings: Discussed Later
- Dewayne Rogers: "Could have definitely saved money, but that's the learning curve. More to do with our experience than UHPC."

Athey Road Bridge (Clare County, MI) - 2023

Again, Substantial Short Term Savings

- MDOT bridge worksheet cost is \$550,000
- Clare County bridge cost \$248,000
- Short Term Savings: \$302,000 (55%)
- Long Term Savings: Discussed Later

Gratiot Road Bridge Over Moak Drain (St. Clair County, MI) - 2023

65

Same Everything – But ...

66

1/4 Lower Fiber Usage

- NCHRP-IDEA testing showed that striated steel fibers at lower dosage can provide performance similar to smooth steel fibers
- The test showed that a dosage of 1.25% - 1.5% by volume could replace 2% by volume of traditional fibers
- Bridge will be cast in late August 2023

NCHRP IDEA 235 Test Data

	V _f (%)	ε _t	f _t (ksi)
Туре Х	1.0	0.0023	1.18
	1.5	0.0030	1.35
	2.0	0.0042	1.79
Smooth	1.0	0.0016	1.09
	1.5	0.0022	1.28
	2.0	0.0026	1.66

Type X fibers are:

- Compliant with the Buy America Act
- Made in the USA
- Commercially available from HiPer Fiber, LLC

pportunity fo avings S **S** Rea

Total Cost (\$)

UHPC Usage in Michigan

- Michigan is a pioneer in UHPC technology
- In 2012 and 2016, MDOT funded a pair of studies at the University of Michigan that produced a nonproprietary UHPC that many researchers are using across the US.
- The State is host to several firsts in UHPC usage:
 - First bridge with open-recipe UHPC closure pour (St. Clair County 2018)
 - First bridge with open-recipe UHPC composite deck (Clare County 2022)
 - First bridge with open-recipe UHPC full deck (St. Clair County 2022)
 - First bridge to use 1.5% by volume steel fiber dosage (St. Clair County 2023)

Development, Characterization and Applications of a Non Proprietary Ultra High Performance Concrete for Highway Bridges

Sherif El-Tawil, Mouhamed Alkaysi, Antoine E. Naaman, Will Hansen and Zhichao Liu

Department of Civil and Environmental Engineering University of Michigan, Ann Arbor, Michigan

Final Thoughts: Cost Considerations

- The cost of open-recipe UHPC ranges from \$1377 to \$1675 per yard in 2023
 - It used to cost \$890 in 2019
- UHPC provides cost savings along two fronts
 - Short term savings due to lighter superstructure
 - Cheaper transportation cost
 - Easier and cheaper handling (needs smaller cranes on construction site)
 - Smaller substructure system
 - Long term savings due to extreme durability
 - Minimal maintenance (reduces citizen annoyance)
 - Extremely durable deck (projected life of 100 to 150 years) with minimal maintenance)
 - Significantly lower replacement costs

UHPC Presents a Compelling Case

- UHPC can be cheaper in both the short run (<u>32+%</u> savings in shown examples) and long run (substantially so)
- Its unique properties enable innovation and outside-the-box thinking.
- Certainly, there are problems, as is true with any new technology.
 - Problems are surmountable
- UHPC technology is a game changer that will transform our transportation infrastructure into an ultra-durable and ultra-resilient system.
Acknowledgement

- Dewayne Rogers
 - Clare County Road Commission
- Michael Clark
 - St. Clair County Road Commission
- Todd Stelma
 - TEG Engineering
- Guy Nelson
 - Valmont Engineering
- Benjamin Graybeal
 - FHWA

Contact Information

Sherif El-Tawil eltawil@umich.edu

Bill Hazelton whazelton@stclaircounty.org