

Steel Bridge Rehabilitation Using UHPC to Repair Corroded Steel Beam Ends

Michael P. Culmo, PE, CHA Consulting, Inc. Alexandra Hain, PhD, PE, University of Connecticut

IBT/ABC-UTC December 2023 Monthly Webinar December 14th, 2022| Virtual

Overview

- Background on Repair and Research
- Overview of Pilot Bridges
- Full-Height Repair Implementation
- Partial-Height Repair Implementation
- Key Findings
- Acknowledgements

4

Background – Corrosion of Beam Ends

- Extensive corrosion of beams occurs beneath leaking joints
- Corrosion can significantly reduce bearing capacity
- US spends **\$8.3 billion annually** to repair or replace corrosion damaged bridges

Current Rehabilitation Methods

Added Steel Plate

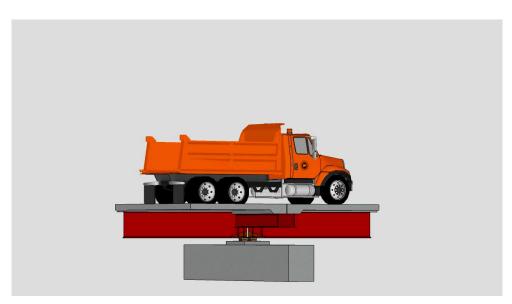
Girder Bearing

- · Addition of steel shapes with painting
- · May require jacking to relieve load
- Jacking may require lane closures
- Long and costly process
- · Does not stop future corrosion from occurring

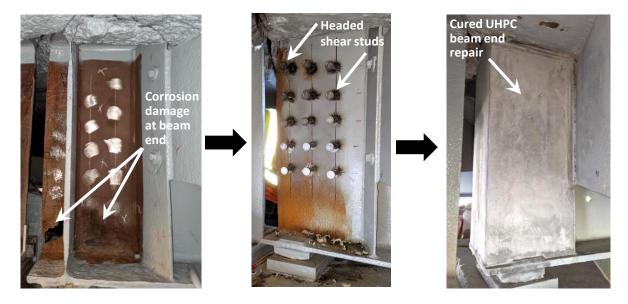
6

Genesis of this Idea

- Tomlinson Bridge, New Haven CT, 1990+
- Approach span beams were corroded at the bascule span counterweight pier
- 100% section loss in the webs
- Solution:
 - Encase the last 10 feet of the beam in concrete
 - Converted the beam end into reinforced concrete
- UHPC is like liquid steel
 - Can we use a similar approach with UHPC?
 - Goal: Eliminate jacking, bolting, and welding of plates
- CTDOT decided to fund a research project
- UConn was selected to execute the research



Concrete-encased riveted steel girders


5

Background – UHPC Beam End Repair

8

Background – UHPC Beam End Repair

Background – UHPC Material

- 1. Compression strength
- 2. Sustained postcracking tensile strength
- 3. Proven durability
- 4. Crack resistance
- 5. Flowability

Background – UHPC Material

a) Clumping after adding liquids

d) Final clumping stage

b) 10 Minutes after liquids added

e) Addition of fibers

c) Larger clumps developing

f) Final consistency

Background – Previous Research

Phase 1
2013-2015
• Proof-of-concept experiments on
third-scale girder specimens
dentify design parameters
Image: Constant of third-scale girder specimens
third-scale girder speciment
third-scale girder speciment
third-scale girder speciment
Image: Constant of third-scale girder speciment
third-scale girder speciment

Phase 1
2013-2015
• Developed finite element models to
identify design parameters
Image: Constant of third-scale girder speciment
Image: Constant of third-scale girder speciment

Image: Constant of third-scale girder

Image: Constant of third-scale girder
Image: Constant of third-scale girder
Image: Constant of third-scale girder
Image: Constant of third-scale girder

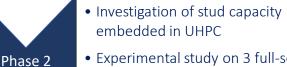

Image: Constant of third-scale girder
Image: Constant of third-scale girder
Image: Constant of third-scale girder
Image: Constant of third-scale girder

Image: Constant of third-scale girder
Image: Constant of third-scale girder
Image: Constant of third-scale girder
Image: Constant of third-scale girder

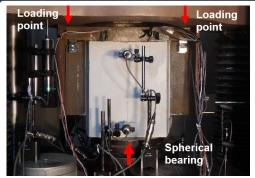

Image: Constant of third-scale girder
Image: Constant of third-scale girder
Image: Constant of third-scale girder
Image: Constant of third-scale girder

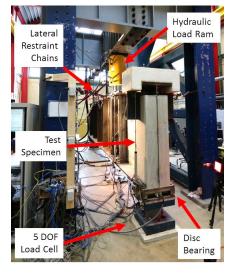
Image: Constant of third-scale girder
Image: Constant of third-scale girder
Image: Constant of third-scale girder
Image: Con

Background – Previous Research

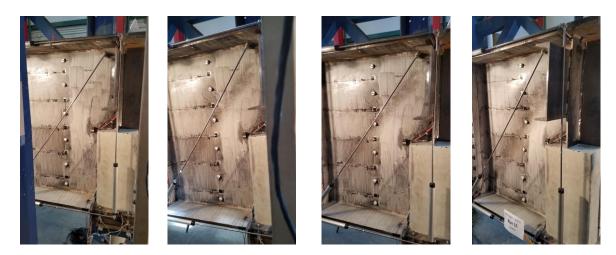
2015-2018

Background – Previous Research

- Investigation of stud capacity embedded in UHPC
- Experimental study on 3 full-scale plate girder repairs



Background – Previous Research


Background – Previous Research

16

Testing

Background – Previous Research

Phase 3, 2018-2023

- Develop tools that can be used by CTDOT to quickly design repairs
- Support design, construction and inspection processes as well as instrument and monitor field implementations of the repair.

Guidelines for the Utilization of Ultra-High Performance Concrete in the Rehabilitation of Steel Bridge Girder Ends

Developed under CTDOT Research Project SPR-2313

18

Field Implementations in CT

Implementation 1


- Rolled beam bridge
- Built in 1965
- Full-height repair
- Plain carbon steel
- Casting October 2019-May 2020
- Cast from top of deck
- Consultant-led design

Implementation 2

- Plate girder bridge
- Built in 1983
- Partial-height repair
- Weathering steel
- Casting October 2021
- Cast from below deck
- CTDOT In-house design

17

Implementation 1 – New Haven, CT

20

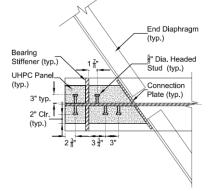
Implementation 1 – New Haven, CT

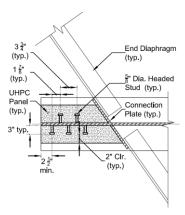
- Composite concrete deck
- Four simple spans, 273 ft
- Ranging skews 25° -35°

- Variable beam sizes, depths ranging from 33-36 in
- Different end conditions

Implementation 1 – Condition of Bridge

- Rated as structurally deficient
- Beam ends, end diaphragms, and connection plates were severely corroded
- Web ends and bearing stiffeners have substantial section loss
 - Max bearing capacity loss: 72%
 - Max shear capacity loss: 15.5%


Implementation 1 – Contracting


Key to success during design was continued sharing of information between research team, owner, and designer

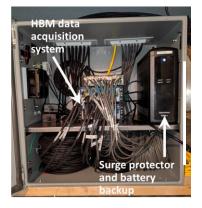
- Designer worked closely with UConn team to get the research data and capacity estimations for the studs
- Unique components in specification for contractor:
 - Requiring pre-bid meeting for all contractors bidding the project
 - UHPC material manufacturer was specified
 - Including mockup to practice casting UHPC
 - Providing access for research team for instrumentation

Implementation 1 – Repair Design

- Capacity design method was used, i.e. restoring original capacity
- Studs: 5/8" diameter
 - 20-40 per end
- UHPC
 - Ductal JS1000
 - 2% fibers
 - Minimum 28-day strength: 18 ksi

Implementation 1 – Mock-up

Implementation 1 – Mock-up



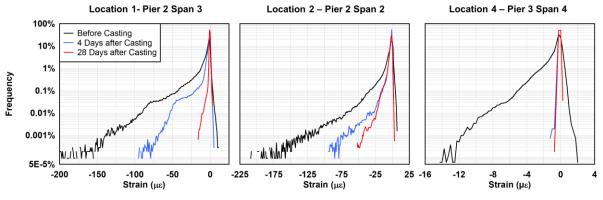
Implementation 1 – Stud Welding

Implementation 1 – Monitoring



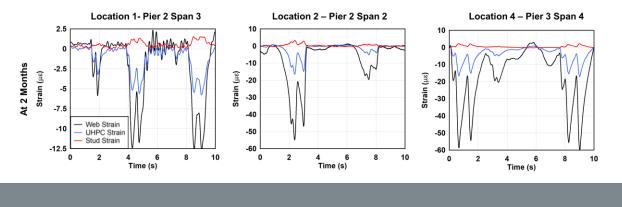
Implementation 1 – Forming

Implementation 1 – Mixing and Casting


Implementation 1 – Cured Beam Ends

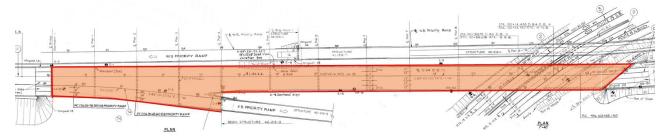
29

Data Collection on Repaired Beam Ends


- If the UHPC panels are engaged, there should be a reduction in the magnitude of web strain under live load events.
- The repair reduced the maximum web strain from the baseline condition as well as the frequency of high-magnitude strain events.

32

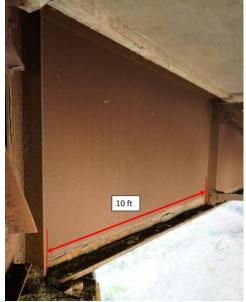
Data Collection on Repaired Beam Ends


- The results showed clear peaks in all strain responses under live load events.
- Prior to repair, the magnitude of web strain under live load was larger while the UHPC and stud strains were zero.

Implementation 2 – East Hartford, CT

- I-84 in East Hartford over RT 15
- Constructed in 1983
- 49 beam-ends repaired

- 12 spans, 1,390 ft
- Simple and continuous spans
- Weathering steel



Implementation 2 – East Hartford, CT

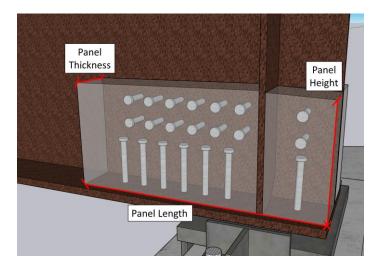
Implementation 2 – Condition of Bridge

- Rated as structurally deficient.
- Section loss extended an average of 7 ft from the end of the girders.
- The height of the deterioration was 4-8 in, localizing the damage to the bases of the webs.
- Interface shear strength was a concern.

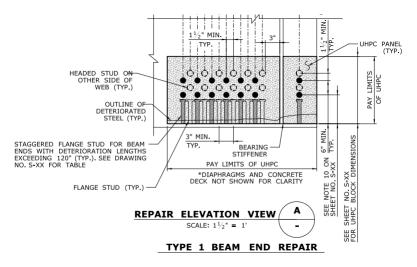
36

Implementation 2 – Contracting

- Design was completed internally by CTDOT Bridge Design Unit
- Unique components in specification for contractor:
 - UHPC shifted to a perfromace-based specification
 - Partial height repair required finishing top surface of UHPC to prevent pooling of water on top of the repair panel
 - Including mockup to practice casting UHPC
 - Providing access for research team for instrumentation


Implementation 2 – Repair Design

- Strength I Load combination was selected
- Studs: 5/8" diameter
- Capacity determined by:


 $P_u = \varphi_s P_n$

Pn=0.7AsFu

- Selected two standard stud layouts
- UHPC
 - CorTuf
 - 2% fibers
 - Minimum 28-day strength: 18 ksi

Implementation 2 – Repair Design

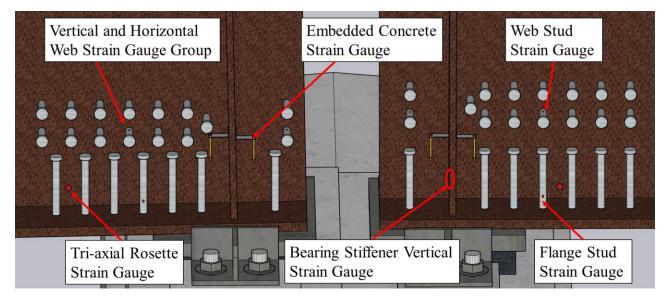
https://portal.ct.gov/DOT/State-Bridge-Design/State-Bridge-Design-Publications

Implementation 2 – Mock-up

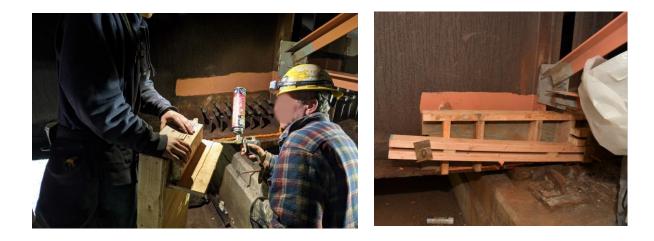
40

Implementation 2 – Stud Welding

• This repair design was unique in that studs were welded to the bottom flange to carry shear between the web and bottom flange.



Implementation 2 – Monitoring


- Monitoring was based on learnings from previous implementation.
- Captured:
 - Accelerations
 - Temperature during curing
 - Strains on web, studs and in UHPC panels.

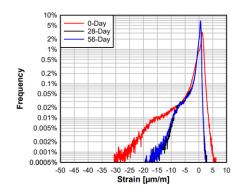
Implementation 2 – Monitoring

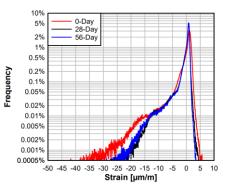
Implementation 2 – Forming

Implementation 2 – Forming

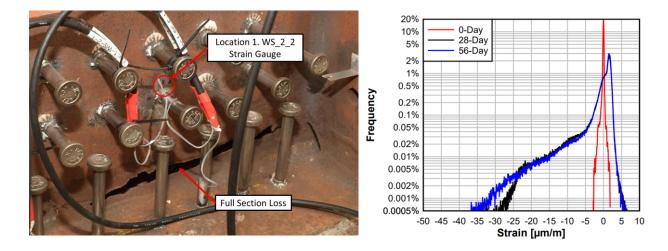
Implementation 2 – Mixing

Implementation 2 – Casting

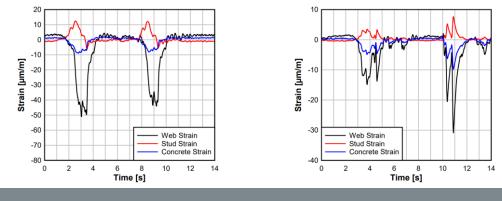

Implementation 1 – Cured Beam Ends



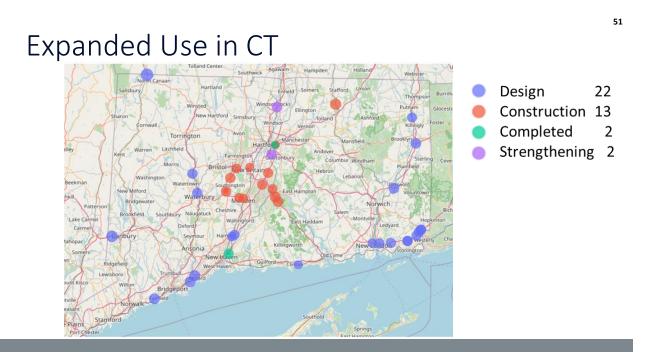
48


Data Collection on Repaired Beam Ends

• The repair reduced the maximum web strain from the baseline condition as well as the frequency of high-magnitude strain events.



Data Collection on Repaired Beam Ends


Data Collection on Repaired Beam Ends

- The results showed clear peaks in all strain responses under live load events.
- Prior to repair, the magnitude of web strain under live load was larger while the UHPC and stud strains were zero.

Key Lessons Learned

- A novel repair procedure for corroded steel beam ends using UHPC was developed and researched over the past 10 years.
- The involvement of the research team during design and construction ensured a smooth transition from research to practice.
- Crucial aspects of implementation include cleaning the area where the studs are to be welded, using the proper ferrules, and the inclusion of a mockup.
- It is critical that the owner, contractor, and inspector understand the structural performance of repair and material specific properties for UHPC prior to implementation.
- The two repairs used different designs, UHPC mixes, and casting procedures showcasing the flexibility of the repair.

Available Design Tools

• The repair guideline and sample drawings can be found on the CTDOT website:

https://portal.ct.gov/DOT/State-Bridge-Design/State-Bridge-Design-Publications

• EDC-6 Materials:

https://www.fhwa.dot.gov/innovation/everydaycounts/edc_6/uhpc_bridge_preservation. cfm

• YouTube video summarizing New Haven Repair:

https://www.youtube.com/watch?v=wIU9CgIITmI

Acknowledgements

- FHWA and CTDOT Project SPR-2313 (Phase III)
- Arash E. Zaghi, PhD, PE, SE the PI on all three phases of research

CHA

- Edgardo Block, Melanie Zimyeski, Andrew Mroczkowski, and Dionysia Oliveira from the CTDOT Research Unit
- Timothy Fields, Andrew Cardinali, Rabih Barakat, Bao Chuong, Zoltan Kanyo, Douglas Gonzalez, David Gentile, Todd Schiavi and Mohammad Masoud for CTDOT
- Michael P. Culmo and Tom Lopata from CHA Consulting and Luis Vila and Jagdeesh Gopal of GM2 Associates
- Tim O'Connell and Justin Shelton from Mohawk Northeast Inc and David Butkus and Jared Barczak from New England Infrastructure

Thanks! Questions?

Michael P. Culmo, PE Chief Bridge Engineer CHA consulting, Inc. mculmo@chacompanies.com Alexandra Hain, PhD, PE Assistant Professor University of Connecticut alexandra.hain@uconn.edu

SCHOOL OF ENGINEERING

IBT/ABC-UTC December 2023 Monthly Webinar December 14th, 2022 | Virtual