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CHAPTER 1 

INTRODUCTION 

1.1. Research Background and Motivation 

According to statistics from the American Road and Transportation Builders 

Association (ARTBA), Florida is among the top three states with the highest work zone 

fatal crashes, with a total of 67, 73, and 71 fatal crashes resulting in 73, 80, and 76 fatalities 

from 2015 to 2017, respectively (ARTBA 2018). Work zone crashes constitute 

approximately 1.55% of the total crashes (i.e., 2,112,783), with 9,142 injury crashes 

between the years 2015 and 2017 in Florida (S4A 2018). Figure 1-1 shows the details of 

the work zone crashes by year in Florida.  

 

Figure 1-1 Work Zone Crash in FL.  

Another important aspect of work zone crashes that needs to be considered by 
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in the state of Florida, around 43.4% were associated with worker presence, in which 16 

workers were killed. The worker fatalities in 2017 are 33.3% and 45.45% higher compared 

to 2016 and 2015, respectively (ARTBA 2018). The significant loss of workers’ lives and 

injuries resulting from work zone crashes indicates the emergent need for a comprehensive 

and in-depth investigation of work zone crash mechanisms.  

The costs of crashes and associated costs are other adverse effects of construction 

work zones. As mentioned in (Mohan and Gautam 2000), according to the US Department 

of Transportation’s (DOT) National Highway Traffic Safety Administration (NHTSA), the 

direct costs of work zone crashes in 1997, including 658 fatalities, 36,000 injuries and 

52,000 property damage-only crashes, was $5.74 billion in the United States. It has been 

reported in many previous studies that there is a meaningful deference in crash severity 

and crash rates, with and without work zone presence conditions (Mallela and Sadavisam 

2011). Moreover, in a recent review from Yang et al. on work zone safety analysis and 

modeling, it was stated that over 85% of previous studies regarding work zone crash 

frequency demonstrate an obvious increase in crash frequencies during work zone 

operations (Yang et al. 2015). Hence, in order to prevent imposing millions of dollars on 

society each year, it is necessary to investigate the possible causes associated with crash 

severity and frequency to improve work zone safety. 

According to the Manual on Uniform Traffic Control Devices (MUTCD), bridge 

construction/reconstruction is categorized as a long-term stationary work zone since the 

construction duration is typically three days. This long roadway occupancy and its related 

components, such as lane closures, lane width reductions, changes in road geometry, and 

the presence of construction workers, increase the crash occurrence risk. Accelerated 
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Bridge Construction (ABC) is an advanced method of project delivery with the aim to 

reduce the on-site bridge construction timeline without losing bridge quality (Ralls 2007). 

This innovative bridge construction method can be employed for either constructing new 

bridges or the replacement of existing bridges with a significantly lower amount of traffic 

disruption during implementation.  

To date, there is no such study that assesses the roadway safety enhancement aspect 

of the ABC implementation method. In addition, most of the existing safety research has 

focused on the traveling public and not on worker safety. To fill this gap, at first glance, 

this study seeks to identify the contributing factors that affect the severity of work zone 

crashes associated with worker presence and crash frequency at bridge construction work 

zone locations. Moreover, it provides quantitative evidence of the benefits that can be 

obtained through the ABC implementation compared to conventional on-site bridge 

construction from a roadway safety point of view. 

1.2. Research Objectives 

Taking the above-mentioned information into consideration, this research aims to 

identify the contributing factors that affect crash severity and frequency of work zone 

crashes through a combination of the results from the conventional statistical models and 

machine learning techniques. This can provide a more comprehensive interpretation of 

work zone crash severity and frequency outcomes. The analysis sheds light on the internal 

probability patterns of crash contributing factors, as well as their overall impacts. In 

addition, it seeks to assess the impact of ABC implementation to enhance work zone safety 

through a benefit-cost analysis, which has not yet been investigated and documented. 
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In this regard, different data sources, such as crash records, project information and 

layouts, roadway geometric features and traffic data, were combined to develop enhanced 

prediction models. In order to identify factors affecting work zone crash severity, a three-

year period of statewide crash data was obtained from the Florida Signal Four Analytics 

(S4A) tool for worker-involved work zone crashes. The most significant contributing 

factors in terms of crash severity were investigated using logistic regression and Support 

Vector Machine (SVM) modeling frameworks for daytime and nighttime conditions 

separately. In addition, likelihood ratio tests were conducted to examine the overall 

stability of model estimates across time periods.  

Identifying factors affecting work zone crash severity is important; however, 

factors affecting crash frequency also need to be studied by considering individual work 

zone location. Since this study seeks to assess the impacts of ABC implementation to 

enhance work zone safety, in order to identify contributing factors for crash occurrences 

under work zone conditions, a number of 60 bridge locations were selected in Miami-Dade 

County. Crash frequency models were then developed through a Negative Binomial 

regression technique and Support Vector Regression (SVR).  

Taking the above-mentioned into consideration, the primary objectives of this 

project are three-fold:  

1. Provide descriptive statistics analysis of work zone crash characteristics.  

2. Model and analyze crash severity and frequency characteristics associated with 

construction work zones.  
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3. Assess the costs related to crash occurrence and crash severity due to work zone 

presence for both the traveling public and construction crew, together with a 

benefit-cost analysis to investigate the benefits of implementing ABC.  

1.3. Project Outline 

In this project, work zone crashes are investigated through the modeling of crash 

severity and crash frequency using the aforementioned data, statistical models and data 

mining techniques.  

This chapter presents a general framework, research background and motivation, 

research objectives, and the project’s organization.  

Chapter 2 includes a comprehensive review of previous research on modeling crash 

severity and frequency with a focus on work zone safety. The literature review includes 

reviewing the crash risk prediction models in terms of statistical and machine learning 

methods. 

Chapter 3 presents a detailed descriptive analysis of work zone crash severity from 

a large sample of work zone crashes in Florida. A mixed logit modeling framework was 

employed to determine the statistically significant crash severity contributing factors. In 

addition, likelihood ratio tests were conducted to examine the overall stability of model 

estimates across time periods. In order to explore the nonlinear relationship between crash 

severity outcomes by time of day and for prediction performance comparison purposes, a 

Support Vector Machine (SVM) model was also employed. Results for the binary level 

severity modeling were provided in terms of different binary and categorical variables. 

Finally, using results from the SVM variable impact analysis, a heat map was created on a 
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typical work zone layout to visualize the critical locations of work zone configuration for 

worker safety. 

Chapter 4 provides a descriptive analysis of work zone crashes that occurred in the 

bridge construction locations. Crash frequency in bridge locations were modeled using a 

negative binomial regression model and support vector regression technique.  Finally, the 

impact of potential contributing factors on crash occurrence were identified and 

investigated using the models’ results. 

Chapter 5 evaluates the costs associated with crash occurrence and crash severity 

in work zone locations. Then, the benefits of ABC implementation through a monetary 

assessment of the potential avoided crashes to support the decision-making process of 

highway construction projects. Moreover, the ABC method will be evaluated if the benefits 

outweigh the costs in the project’s life-cycle.   

Chapter 6 concludes the major findings of the project from each section and 

provides recommendation for future research. 
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CHAPTER 2 

LITERATURE REVIEW 

In the current section, numerous prior studies from different points of view have 

been reviewed. In this chapter, a detailed literature review related to crash severity and 

crash frequency was conducted and organized in statistical methods, machine learning 

methods, and the corresponding work zone related studies.  

2.1. Modeling Crash Severity 

2.1.1. Statistical Methods  

Statistical models are the primary method used in traffic crash severity analysis, 

and regression models are the most common techniques used to identify the relationship 

between dependent and independent variables. Previous works have shown that either 

modeling approach, such as binary logit and binary probit models (Haleem and Abdel-Aty 

2010, Ahangari et al. 2018, Mokhtarimousavi et al. 2019), ordered response models (Ye 

and Lord 2014, Ghasemzadeh et al. 2018, Haghighi et al. 2018, Mokhtarimousavi et al. 

2020a), multinomial logistic regression model (Islam and Mannering 2006, Ye and Lord 

2014, Mokhtarimousavi 2019), random parameter models (Anderson and Hernandez 2017, 

Mokhtarimousavi et al. 2021a) , or more advanced models such as latent class models 

(Behnood et al. 2014, Behnood and Mannering 2016), and generalized models such as 

(Eluru et al. 2008, Osman et al. 2018), can adequately predict injury severity.  

Although the application of different statistical modeling approaches has been 

documented in previous studies, the non-mixed models have an inherent shortcoming in 

that they do not account for unobserved heterogeneity commonly present in the crash data 
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(Chen and Tarko 2014, Behnood and Mannering 2016, Anderson and Hernandez 2017, 

Mamdoohi et al. 2018, Sharifi et al. 2020). An extensive review of severity analysis was 

conducted in a recent review paper by Mannering and Bhat (Mannering and Bhat 2014).  

This publication contains additional details of the methodological frontier in the crash 

severity analysis.  

These discrete outcome models have evolved to consider several severity 

contributors to severity levels of the crashes as dependent variables. These severity levels 

have been aggregated for crash level, driver level, occupant level, or vehicle level of 

severity. For example, after applying the Ordered Probit (OP) model on a 5-year crash 

dataset extracted for Washington State, contributing factors affecting injury severity at 

work zone crashes under adverse weather conditions were investigated by Ghasemzade 

and Ahmed (Ghasemzadeh et al. 2018). They found that variables such as weather, lighting 

conditions, rural principal arterials roadway type, driving under the influence (DUI), and 

traveling during peak hours are among the most important factors influencing the severity 

of crashes at work zones. In another study by Osman et al. (Osman et al. 2018), a Mixed 

Generalized Ordered Response Probit (MGORP) modeling framework was used to 

investigate the impacts of contributing factors in different work zone configurations on 

passenger-car crash injury severity. Lane closure, lanes shift, crossover, work on shoulder 

or median, and intermittent/mobile work zones are considered for this study. Crashes 

during weekends, partial control of access, roadways classified as rural, crashes during 

evening times, and curved roadways were found as the factors that increase the likelihood 

of severe outcomes for the occupants of passenger cars across all work zones.  
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Ozturk et. al in (Ozturk et al. 2015) compared the crash severity in work zone 

crashes to non-work zone crashes for crash records between 2004 and 2010 in the state of 

New Jersey. Utilizing binary logit models, they found that some crash types such as 

overturn and angle have higher impacts on work zone crash severity than non-work zone 

conditions. Also, their results revealed that DUI has a higher impact on work zone crash 

severity. In addition, lightweight vehicles are more prone to be involved in more severe 

crashes in work zones than non-work zone locations. Utilizing five years of crash data from 

2013 and 2017 in Miami-Dade County, Mokhtarimousavi et al. (Mokhtarimousavi et al. 

2019), employed a mixed binary logit to investigate work zone crash severity. Four 

variables, including work zone type lane closures, crashes that took place between 4:00 

p.m. and 8:00 p.m., clear weather condition, and alcohol-related crashes, were found to be 

statistically significant with a heterogeneous impact on crash severity. They found that 

crashes that occurred under conditions of lane closure, afternoon peak, clear weather 

condition, and alcohol consumption were all less likely to result in an injury crash. Work 

zones may sometimes negatively affect the transit services, for instance, the transit signal 

priority which operates based on certain rules and guidelines (Ali et al. 2017, Ali et al. 

2018). 

Three separate logistic regression models were developed in (Weng and Meng 

2011) to study driver casualty risk in the construction, maintenance and utility work zones 

on public roads within the 51 U.S. states between 2001 and 2006. They found that five risk 

factors are associated with increased driver casualty risk for all three work zone types. 

Road alignment, truck involvement, most harmful event, vehicle age and notification time 

were variables that increased the risk of being in more severe crashes, while traffic control 
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devices and restraint use were associated with reduced driver casualty risk. Li and Bai in 

(Li and Bai 2008) used a logistic regression technique to identify the significant risk factors 

for work zone crash severity in Kansas highway work zones. They found that risk factors 

such as poor light condition, truck involvement, having only two travel lanes, and high-

speed limit are associated with high risk levels in work zone crashes.  

Although some variables were found to have the same impacts on crash severity in 

work zone locations (either increasing the risk of being in more severe crashes or 

decreasing the risk) in previous studies, mixed impacts were found as well. For instance, 

the impact of the number of lanes in (Weng and Meng 2011) versus the findings of  (Li 

and Bai 2008), or driving under the influence (i.e., alcohol/drug) in (Qi et al. 2005) versus 

the findings of  (Mokhtarimousavi et al. 2019), and so forth.  

2.1.2. Machine Learning Methods 

Machine Learning techniques (MLs) have recently been widely applied in 

transportation studies (Tabibi et al. 2016, Mahmoudzadeh et al. 2019, Nezafat et al. 2019, 

Parsa et al. 2019a, Mahmoudzadeh and Wang 2020, Parsa et al. 2020, Taghipour et al. 

2020), including traffic injury severity analysis (Li et al. 2012, Yu and Abdel-Aty 2013, 

Chen et al. 2016, Alkheder et al. 2017, Mokhtarimousavi 2019, Mokhtarimousavi et al. 

2019, Mousavi et al. 2019b, Mokhtarimousavi et al. 2020a).  

Even though conventional statistical models have been widely applied for crash 

injury severity analysis, the results of these statistical models may be biased for their two 

major limitations: pre-assumption of data distribution, and consideration of a linear form 

of utility functions (Li et al. 2012, Zeng and Huang 2014). Compared to statistical methods 



11 

that provide good indications of the likelihood, MLs have been frequently applied to 

provide more accurate prediction models due to their ability to deal with more complex 

functions. Different methods have been employed to solve classification problems such as 

studying injury severity in safety analysis, including Support Vector Machine (SVM) (Li 

et al. 2012, Chen et al. 2016, Mokhtarimousavi et al. 2019, Kitali et al. 2020), Artificial 

Neural Network (ANN) (Delen et al. 2006, Rezaie Moghaddam et al. 2011, Zeng and 

Huang 2014, Alkheder et al. 2017), K-Nearest Neighbor (KNN) (Beshah and Hill 2010, 

Iranitalab and Khattak 2017), and Classification and Regression Trees (CART) (Kashani 

and Mohaymany 2011, Chang and Chien 2013, Ghasemzadeh and Ahmed 2017). 

In recent studies that compared the prediction performance of MLs to conventional 

statistical models, it was demonstrated that MLs provide either superior or comparable 

prediction performance results (Li et al. 2012, Zeng and Huang 2014, Alkheder et al. 2017, 

Iranitalab and Khattak 2017, Mokhtarimousavi 2019, Mokhtarimousavi et al. 2019, 

Mokhtarimousavi et al. 2020a). Previous model comparisons have been performed with a 

number of statistical models such as Ordered Probit (OP) (Li et al. 2012, Alkheder et al. 

2017, Ghasemzadeh and Ahmed 2017), Ordered Logit (OL) (Zeng and Huang 2014), 

Multinomial Logit (MNL) (Iranitalab and Khattak 2017, Mokhtarimousavi 2019), and 

Binary Mixed Logit (BMXL) (Mokhtarimousavi et al. 2019).  

Crash severity was investigated by Li et al., in (Li et al. 2012) through the 

application of SVM on individual crash data collected at 326 freeway diverge areas. While 

it was shown that the SVM provides more accurate predictions of crash severity outcomes 

compared to the OP model, a sensitivity analysis was performed to extract the impacts of 

external factors. Although the results of the SVM model was consistent with the OP model 
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for several variables, SVM produced more reasonable results for two of the contributors, 

including exit ramp and shoulder width of the freeway mainline. In another study and based 

on two-year crash data gathered in New Mexico, SVM was utilized to investigate driver 

injury severity patterns in rollover crashes (Chen et al. 2016). In this study, the significant 

variables were first identified through an application of CART model, and then, after 

incorporating the significant variables in SVM, the model prediction performance was 

evaluated. It was shown that while the cubic SVM classifier outperforms the medium 

Gaussian RBF SVM classifier, aggregating a multi-categorical response variable into a 

binary response variable will also improve the model prediction performance. In addition, 

it was found that alcohol or drug consumption is the most significant cause of drivers being 

involved in more severe rollover crashes, while using a seatbelt is the most effective way 

to protect drivers.  

Applying an ANN model trained by the Whale Optimization Algorithm (WOA) by 

Mokhtarimousavi et al. in (Mokhtarimousavi et al. 2020a), injury severity in vehicle-

pedestrian crashes was explored by day-of-week. The purpose of the research was to 

investigate the contributing factors through statistical and WOA-ANN models, where the 

statistical models deal with likelihood estimation and the relative probability is calculated 

through the ANN models. Feed-forward and cascade forward backpropagation training 

algorithms were applied to train the base ANN model, and a Cross-Validation (CV)-based 

experimental design was used to simultaneously obtain the best training algorithm with the 

corresponding optimal number of hidden layers. Moreover, they statistically tested if 

weekday and weekend crashes should be modeled separately. They found that there is a 

substantial and statistically significant difference between the estimated parameters across 
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days of the week. In addition, their results revealed the internal probability patterns of crash 

variables for weekday and weekend models, as well as their overall impacts. 

Chang and Chien in (Chang and Chien 2013) proposed a CART model to study 

driver injury severity in truck-involved accidents. After analysis of twenty-one predictor 

variables, they found that variables, including drinking-driving, seatbelt use, vehicle type, 

collision type, etc., are among the key determinants of injury severity outcomes for truck 

accidents. In another study, Wei et al. (Wei et al. 2017) adapted a CART model to study 

the severity of work zone crashes under different lighting conditions. They studied 

Tennessee work zone crashes during 2003–2015 under daylight, dark-lighted, and dark-

not-lighted conditions. They found that the higher the number of lanes in the daylight 

condition resulted in a higher number of severe crashes, while a lower number of severe 

crashes occurred at night. The found the same results for driving under influence of drugs 

and alcohol.  

In the study done by Weng et al. (Weng and Meng 2011), a tree-based logistic 

regression approach was adopted to assess a work zone casualty risk on highway work 

zone crashes between 2004 and 2008 in Michigan. The results demonstrated that the 

proposed approach provided more accurate prediction results and outperformed the pure 

decision tree model. Another hybrid machine learning and statistical model called the 

probit-decision tree model was recently applied in (Ghasemzadeh and Ahmed 2017) to 

explore the weather-related work zone crash severity. Using a 5-year period (2010-2014) of 

Highway Safety Information System (HSIS) data, work zone crashes were extracted from 

nine states, including California, Illinois, Maine, Michigan, Minnesota, North Carolina, 

Ohio, Utah and Washington. The results revealed that variables indicated a curve at the 
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crash location, number of motor vehicles involved, presence of traffic control devices such 

as stop, signal, yield signs, land use (crash occurred in urban area), crash type, work zone 

activity (if the work zone has been active or not when the crash occurred) and lighting 

condition were among the most important contributing factors on work zone weather-

related crash severity. 

2.2. Modeling Crash Frequency 

2.2.1. Statistical Methods  

Crash frequency, which is the number of crashes occurring in a specific location 

during a specific time period of interest, has been investigated by different statistical 

models over the years. These models include Poisson regression (Miaou 1993, Qi et al. 

2013, Ye et al. 2018), negative binomial (Khattak et al. 2002, Qi et al. 2013, Alluri et al. 

2017, Mousavi et al. 2019a, Ulak et al. 2020), Poisson-lognormal (Park and Lord 2007, 

Ma et al. 2008, El-Basyouny and Sayed 2009b), zero-inflated (Lord et al. 2005, Dong et 

al. 2014, Raihan et al. 2019), random-effects (Aguero-Valverde 2013, Ma et al. 2017), 

random parameters models (Anastasopoulos and Mannering 2009, El-Basyouny and Sayed 

2009a), Gaussian mixture model (Mansourkhaki et al. 2017), and so forth. An extensive 

review of methodological alternatives for crash frequency analysis can be found in a review 

paper by Lord and Mannering (Lord and Mannering 2010). Please see this publication for 

more details on existing models for analyzing crash-frequency data, including the 

advantages and disadvantages of each approach and the methodological frontier in crash 

frequency analysis. 

In the context of work zone safety, the crash counts in a work zone location at a 

specific period of time is denoted as the work zone crash frequency. Among all of the 
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modeling approaches for analyzing cash frequency, the negative binomial is the most 

frequently applied model. Khattak et al. in (Khattak et al. 2002) studied the effect of work 

zone duration on crash frequency. Using California freeway work zones data and applying 

negative binomial models, the impact of work zone duration for both injury and non-injury 

crashes in the pre-work zone and during-work zone periods was analyzed. They found that 

frequencies increased with increasing work zone duration, length, and average daily traffic.   

A truncated Poisson model and negative binomial models were used in (Qi et al. 

2013) to identify the factors that influence the frequency of rear-end crashes in work zones 

locations. For this analysis, 6,095 work zone crashes occurred in New York State from 

1994 to 2001, including 2,481 rear-end crashes. Their analysis demonstrated that work 

zones controlled by flaggers and work zones with alternating one-way traffic are more 

prone to have more rear-end crashes compared to those controlled by arrow boards. In 

addition, among all work zone types, work zones for capacity and pavement improvements 

are associated with more rear-end crashes. Ozturk et al. in (Ozturk et al. 2013) developed 

negative binomial regression models for daytime and nighttime conditions using 120 

construction work zone crash records from 60 work zone locations in New Jersey between 

2004 and 2010. They found that project duration, work zone length, and traffic volume 

were among the most important factors that increase work zone crash frequency. 

In a study done by Chen and Tarko (Chen and Tarko 2014), using work zone data 

obtained from the project engineer’s survey with the Indiana road inventory, various work 

zone design and traffic management features such as lane shift, lane split, and detour were 

studied. As a result, a random parameter negative binomial model was developed, and the 

results were further validated with a fixed parameters negative binomial model with 
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random effect. From the methodological points of view, they stated that the convenient 

fixed parameters negative binomial models may be more practical than the random 

parameters models. In another study with a focus on law enforcement, a random-effect 

negative binomial model was developed in (Chen and Tarko 2012). A number of 72 work 

zones on state-maintained freeway and non-freeway roads in the state of Indiana between 

2008 and 2010 were studied. Some temporal variations in the risk of crash frequency were 

found in the results. For example, it was shown that the crash frequency was 24% higher 

between November and December, and it was also 20% higher in the months of May, June, 

and July. Also, they showed that there was a 41.5% reduction in the work zone crash 

frequency when police enforcement was involved.  

2.2.2. Machine Learning Methods 

Although statistical models have been utilized to analyze vehicle crash frequency 

for many years, Machine Learning techniques (MLs) have recently received attention 

among traffic safety professionals. Considering the same limitations mentioned earlier in 

this chapter regarding conventional statistical models, which may lead to erroneous 

estimations of crash frequency likelihood, MLs do not require any pre- assumption of an 

underlying relationship between the response variable and predictors (i.e., independent 

variables). A number of Crash Frequency (CF) models were developed for prediction crash 

frequency, and among them, CART (Chang and Chen 2005), SVM (Li et al. 2008, Qu et 

al. 2013, Dong et al. 2015) and ANN (Jafari et al. 2015, Huang et al. 2016, Zeng et al. 

2016, Pan et al. 2017) are the most applied models in the literature.  
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Chang and Chen (Chang and Chen 2005) used a CART model to analyze two-year 

crash data for National Freeway 1 in Taiwan. They treated the crash frequency (i.e., non-

negative integers) as a classification problem by classifying them into 0 to 3 and 4 or more 

observed accidents and found that daily traffic volume and precipitation are two key 

variables for freeway accident frequencies. They compared the prediction performance of 

the proposed CART model with a negative binomial regression model and concluded that 

CART is a promising tool to analyze freeway accident frequencies.  

SVM and negative binomial regression models were applied in (Li et al. 2008) to 

predict 122 motor vehicle crashes that occurred during a 5-year period in Texas.  They 

tested the developed models on different fitting set sizes and compared their prediction 

performance through the Mean Absolute Deviation (MAD) and Mean Squared Predictor 

Error (MSPE) evaluation criteria. They demonstrated that SVM models predict crash data 

more effectively and accurately than traditional NB models. They further compared the 

results with a Back-Propagation Neural Network (BPNN) documented in previous studies 

and found that SVM provides compatible prediction results. In addition, a sensitivity 

analyses on the variables ADT and right-shoulder width were performed. It was shown that 

while right-shoulder width has a quadratic functional form, an increase in right-shoulder 

width results in a decrease in crash frequency. Contradicting results were found for ADT.  

In the study done by Que et al. (Qu et al. 2013), the application of SVM to predict 

real-time freeway sideswipe crashes  in the Milwaukee, Wisconsin was presented. They 

implemented the SVM models with three different kernel functions with significant 

features as inputs. Then, the devolved models were compared with the multi-layer 

perceptron (MLP) artificial neural network. They found that while the SVM provides 
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compatible prediction accuracy results with MLP-ANN, it can better identify sideswipe 

crashes at higher false alarm rates. In other study done by Dong et al. (Dong et al. 2015), 

the potential application of SVM to predict zone-level crashes was studied. In order to 

handle high-dimension spatial data, Correlation-based Feature Selector (CFS) was utilized 

to evaluate candidate contributing factors prior to fitting the models. Using the data from 

Hillsborough County in Florida, the results of SVM models were compared with the 

Bayesian spatial model. The results showed that while SVM is able to take spatial 

proximity into account, it showed better prediction performance compared to the Bayesian 

spatial model. The best model results were obtained through the SVM implemented with 

the RBF kernel and setting the 10% of the whole dataset as the testing data. The mean 

predicted probabilities were considered as a criterion with sensitivity analysis to explore 

the impacts of explanatory variables on crash occurrence. 

Jafari et al. (Jafari et al. 2015) used the ANN model to predict road traffic death 

rates for 178 countries across the world. A Genetic Algorithm (GA) model was then applied 

to optimize the ANN parameters, while the model’s prediction results were verified by 

conducting a five-fold cross-validation. Road traffic death rate was aggregated into three 

classes, 0-9, 10-19, and over 20 deaths per 100, 000 population, and Root Mean Square 

Error (RMSE) was considered as the model fitting criteria. It was shown that the proposed 

GANN is able to predict road traffic deaths with a satisfactory RMSE, and the advantages 

of using GA over gradient search techniques were highlighted. Huang et al. in (Huang et 

al. 2016) investigated the nonlinear relationships between crash frequency and the relevant 

risk factors on road segments in Hong Kong using a Radial Basis Function Neural Network 

(RBFNN) model. They optimized the RBFNN model first by a K-means cluster algorithm 
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to determine the centers of RBFs. Then, a Recurrent Least Squares (RLS) algorithm was 

applied to estimate the basis and weights between the output node and RBFs. The 

prediction performance of the developed model was compared with the traditional NB and 

Back-Propagation Neural Network (BPNN) models. The results revealed that most of the 

contributing factors, including AADT, speed limit, and lane-changing opportunity, have 

nonlinear relationships with crash frequency, while length and rainfall have positive 

impacts on crash frequency.  

Zhang et al. in (Zeng et al. 2016) also utilized a Neural Network (NN) model to 

explore the nonlinear relationship between crashes that occurred on 211 road segments in 

Hong Kong, along with risk factors. A network structure optimization algorithm was 

proposed to avoid the over-fitting issue, and a rule extraction method is proposed to manage 

the black-box nature of the NN model. They found that variables such as AADT and 

segment length have a positive impact on crash frequency, while higher speed limits 

resulted in a lower number of crashes. In addition, comparing the prediction results with 

the NB model showed that the proposed model outperforms the traditional NB model.  

A Deep Belief Network (DBN) was utilized in (Pan et al. 2017) to predict crashes 

from different highways and regions in order to develop a global road Safety Performance 

Function (SFP). Three crash data sets from 2000 to 2008 were used and aggregated into 

different highway classes, number of lanes, access control, and region (Ontario (ON) 

province, Colorado (CO) State and Washington (WA) State), and were divided into urban 

and rural subgroups. Their results showed that a single DBN model can be trained globally 

with multiple datasets, while its prediction performance is comparable to the traditional 

NB model. They concluded that instead of developing several local models separately 
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through the traditional statistical models like NB, applying the proposed model will 

significantly reduce the modelling works. More importantly, it was shown that DBN has 

the flexibility to make use of new crash data, which will be a very tedious process if NB is 

employed.   
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CHAPTER 3 

CRASH SEVERITY MODELING OF WORK ZONE CRASHES 

3.1. Introduction 

In recent years, work zones have been a high-priority issue in traffic safety analysis, 

which has gained increased attention among transportation safety analysts and decision 

makers (Adomah et al. 2021). In addition, advances in intelligent transportation system 

technologies have shown promising benefits to address work zone safety concerns. For 

instance, the safety benefit of Reduced Speed Work Zone Warning (RSZW) that increase 

the safety of drivers and construction workers in Work Zones have been recently 

investigated by (Arafat et al. 2020) and (Hadi et al. 2019a). However, up to date these 

applications are still in the early stages of deployment.  

The environmental and geometric characteristics of work zones make them prone 

to crash occurrence or increasing crash severity (Garber and Zhao 2002, Khattak et al. 

2002). According to statistics from the American Road and Transportation Builders 

Association (ARTBA), there were 710 crashes that resulted in 799 fatalities in work zone 

locations in U.S. roadway networks in 2017. Florida is among the top three states for the 

highest number of work zone crashes, with an average number of 76 fatalities resulting 

from 71 fatal crashes in 2017 (ARTBA 2018). Worker safety is another important aspect 

of work zone crashes, which has been rarely discussed within work zone crash severity 

literature (Yang et al. 2015). Hadi et al. in (Hadi et al. 2019b) utilized the Florida ITS 

Evaluation tool (FITSEVAL) to assess the mobility, safety, environmental, and user-cost 

benefits of Smart Work Zone applications. The study results showed that the Smart Work 

Zone systems are easy to use and seem to provide reasonable safety benefits. 
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Worker fatalities in 2017 show a 33% increase compared to 2016 (16 deaths in 

2017 vs. 12 in 2016). The significant loss of workers’ lives and injuries resulting from work 

zone crashes  must be properly addressed so that a comprehensive and in-depth 

investigation of work zone crash mechanisms can be conducted. 

Despite the recent efforts to investigate crash severity, worker presence and its 

impact on injury severity in work zone crashes is still unexplored. A better understanding 

of work zone crash characteristics can enhance roadway safety, not only for road users, but 

also, for construction crews.   

From a logistics perspective, work zone activities can occur during nighttime hours 

to reduce the adverse impacts on traffic operations and complaints by the traveling public 

(Srinivasan et al. 2011, Nafis et al. 2019). However, this requires further attention to 

worker safety due to the more hazardous work conditions at night. Although the number 

of work zone crashes that occurred during the daytime, involved workers, and resulted in 

an injury in Florida in 2016 were higher than the ones that occurred during the nighttime 

(76.32% vs. 23.68% respectively), they shared the same number of fatalities, of which 34 

people were killed in total (S4A 2018). The lower traffic volumes during the nighttime 

hours increases driver maneuverability and yields higher operating speeds, which increases 

safety risks for the construction crew. The visibility of drivers and workers at night is 

another issue that can affect the relative daytime and nighttime work zone crash risk and 

severity (Arditi et al. 2007, Li and Bai 2009, Srinivasan et al. 2011). 

With that in mind, and considering that most of the existing safety research has 

focused on the traveling public and not on worker safety, this chapter seeks to identify the 

contributing factors that affect the severity of work zone crashes associated with worker 
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presence by time-of-day. To the best of the authors’ knowledge, this is a very first attempt 

to analyze the severity of work zone crashes associated with worker presence by time-of-

day through discrete choice and supervised machine learning models.  

In this chapter, crash severity outcomes of work zone crashes involving workers is 

investigated by time-of-day. Preliminary insight into potential significant variables was 

obtained through the application of a Random Forest (RF) analysis by ranking candidate 

variables according to their relevant importance. A mixed logit modeling framework was 

then applied to determine statistically significant crash severity contributing factors. In 

addition, likelihood ratio tests were conducted to examine the overall stability of the 

model’s estimates across time periods. In order to explore the nonlinear relationship 

between crash severity outcomes by time-of-day, as well as to compare the effects to that 

of the logit model and to assess prediction performance, a Support Vector Machine (SVM) 

model was also employed. A Cuckoo Search (CS) metaheuristic algorithm was then 

utilized to tune SVM parameters with the goal of enhancing the prediction performance 

and, as a result, improve inference on variable effects. Variable impact analysis was also 

performed by taking into account the black-box characteristic of the SVM and comparing 

it to the effects of variables indented through the logit modeling framework. 

As for the analysis of this chapter, crash records are obtained from the 

Florida Signal Four Analytics tool (S4A 2018), which is a statewide interactive, web-based 

geospatial crash analytical tool.  
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3.2. Descriptive Statistics for Crash Severity 

A three-year period of statewide crash data was collected from January 1, 2015 to 

December 31, 2017. Crashes that occurred in work zone areas with worker presence were 

then extracted from the crash records. The dataset contained a total of 2,113,678 crash 

records, with 1.55% of the crashes occurring in work zones (i.e., 32,669 occurred in work 

zones). Out of the total number of work zone crashes, 44.50% were associated with worker 

presence. The crash severity levels are classified into three levels as: no injury or property 

damage only (PDO), injury which includes possible injury, non-incapacitating and 

incapacitating injuries, and fatality. The purpose of conducting a descriptive analysis of 

work zone-related crash severity is to provide an initial view of data distribution within 

work zone crash severity levels. 

Figure 3-1 demonstrates the distribution of work zone crashes involving workers 

per year by severity levels.  

 

Figure 3-1 FL WZ Crash Severity Statistics (2015-2017) 
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In terms of the total number of crashes, 71.3% of the work zone crashes were PDO, 

28.1% of the work zone crashes were injury, and 0.6% of the work zone crashes were fatal 

crashes. As  shown in Figure 3-1, an unusual increment was observed for the number of 

work zone crashes in 2016 for each category. However, as illustrated in Figure 3-2, the 

general trends of fatal and injury crashes, work zone crashes and total crashes has followed 

an increasing trend in last nine years in the state of Florida.   

Although the low percentages of work zone crashes may not seem alarming at first 

glance, according to the statistics, during 2015 and 2017, the average injury and fatality at 

work zone crashes is 5% higher than the amount of fatalities in road crashes not involving 

work zones (28.68% and 23.68%, respectively). 

 

 

Figure 3-2 FL Crash Severity Statistics (2011-2019) 
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3.2.1. Severity Distribution by Time of Occurrence 

Figure 3-3 illustrates the relationship between work zone crash severity and time of 

crash occurrence in the format of a pie chart. The time of day was divided into four 

categories, namely morning peak (6:00–10:00 a.m.), daytime non-peak (10:00 a.m.–4:00 

p.m.), afternoon peak (4:00–8:00 p.m.), and nighttime (8:00 p.m.–6:00 a.m.). As shown in 

Figure 3-3, crashes that occurred during nighttime period were the most severe crashes 

with the highest rates of injury and fatality compared to other periods. In contrast, statistical 

results show that daytime non-peak was the safest time period in regard to injury and fatal 

crashes. In addition, most frequent work zone crashes involving workers occurred during 

the daytime off-peak periods. This makes sense, as it matches the construction time 

schedule.  

A chi-square test was also performed to evaluate the association between time of 

day variables and crash severity outcomes. With a chi-square value of 𝜒2 = 31.386 and 

degree of freedom (df) =6, the test results show that work zone crash severity with a 95% 

level of confidence is significantly associated with time of crash occurrence.  
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Figure 3-3 Severity Distributions by Time of the Day 
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addition, Pearson chi-square test results (𝜒2= 1240.00 and df=24) demonstrate a significant 

correlation between crash type and crash severity outcomes. 

  

 

 

Figure 3-4 Severity Distributions by Crash Type 
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Figure 3-5 Work Zone Crash Type Pattern Over 24 Hours 

The number of vehicles involved in a crash is another important consideration of 

crash attributes. The higher the number of vehicles are involved in a crash, in the higher 

the direct and indirect costs of the crash for both crash partners and the traveling public. In 

the present study, the number of vehicles involved in the crash was considered to be single 

vehicle and multi-vehicle involved (i.e., more than one vehicle involved in the crash event). 

The crash severity distributions by number of vehicles are shown in Figure 3-6. 

  

Figure 3-6 Severity Distributions by Vehicles Involved 
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Based on the proportions observed, single vehicle crashes were more severe than 

multi-vehicle crashes. Although they shared almost the same percentage of injury crashes, 

the percentage of single-vehicle fatal crashes is over two times as much as multi-vehicle 

crashes. The Pearson's chi-squared test result showed that with a 𝜒2=21.75 and df=2, the 

crash severity and number of vehicles in crash are significantly correlated within the 95% 

level of significance. 

The presence of law enforcement and its effectiveness in preventing drivers who 

are inattentive or who exhibit irresponsible behavior has been widely studied in (Kamyab 

et al. 2003). The negative impact of law enforcement’s presence on crash severity was also 

investigated by Raub et al. in (Raub et al. 2001, Mokhtarimousavi et al. 2020b). The law 

enforcement factor has been recorded in a crash dataset as whether law enforcement is 

available or not. Figure 3-7 shows that with the presence of law enforcement at construction 

work zone sites, the portion of fatality and injury crashes are slightly lower than without 

law enforcement, 1 and 2 percent, respectively. Moreover, the results from the Pearson chi-

square test (𝜒2= 4.659 and df=2) showed that the 𝑃 value (0.973) is greater than 0.05; 

therefore, the null hypothesis shows that the association that existed between the law 

enforcement presence and crash severity was rejected. 
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Figure 3-7 Severity Distributions by Law Enforcement 
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In this research, variables including weather, surface and light conditions were 

studied in terms of crash severity as environmental conditions. 

The variables that represent the weather conditions were originally categorized into 

eight groups; however, 99.54% of work zone crashes occurred during three weather 

conditions, namely clear, cloudy, and rainy, as shown in Figure 3-8. 

Clear weather was the riskiest condition for work zone crashes involving workers, 

in which the highest number of fatality crashes occurred.  As for injury crashes, the 

majority of crashes occurred during cloudy weather conditions (29.1%).  The results of the 

chi-squared test with 𝜒2= 3.43 and df=4 resulted in the 𝑃 value being equal to 0.487 (which 

is greater than 0.05); thus, the null hypothesis was rejected.  
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Figure 3-8 Severity Distributions by Weather Condition 

Similarly, road surface condition was originally categorized into seven conditions; 

however, 99.08% of work zone crashes occurred during three weather conditions, namely 

clear, cloudy, and rainy, as shown below in Figure 3-9.  

  

Figure 3-9 Severity Distributions by Road Surface Condition 

Fatality, 

0.6%

Injury, 

28.0%

PDO, 

71.4%

Clear Weather (n=10822)
Fatality, 

0.5%

Injury, 

29.1%

PDO, 

70.4%

Cloudy Weather (n=2844)

Fatality, 

0.4%

Injury, 

26.7%

PDO, 

73.0%

Rainy Weather (n=799)

Fatality, 

0.6%

Injury, 

28.2%

PDO, 

71.2%

Dry Surface Condition (n=13021) 

Fatality, 

0.4%

Injury, 

28.5%

PDO, 71.1%

Wet Surface Condition (n=1384)



33 

Results have shown that a portion of fatality crashes was 50% greater on dry 

roadway surfaces; however, injury crashes were slightly higher on wet surfaces. Similar 

relationships, such as weather condition, were observed between road surface and crash 

severity. The results of the chi-squared test with 𝜒2= 1.266 and df=2 showed that the 

obtained 𝑃  value (0.531) was greater than 0.05; thus, the hypothesis of having an 

association between road surface conditions and crash severity was rejected. 

The last considered environmentally-related variable is the light condition. In order 

to see the effect of light on crash severity, the time of crash occurrence was divided into 

two time periods. Crashes that occurred between 6:00 a.m. to 7:59 p.m. were considered 

daytime crashes, and those that occurred between 8:00 p.m. to 5:59 a.m. were considered 

nighttime crashes. As presented in Figure 3-10, the work zone fatality rate in nighttime 

crashes was two times higher than those occurring during daytime conditions. In addition, 

results from the chi-squared test with 𝜒2=23.621, df=2, and the 𝑃 value equal to 0.00 

indicated that an association exists between the light conditions and crash severity at the 

95% level of significance. 

  

Figure 3-10 Severity Distributions by Light Condition 
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3.2.4. Severity Distribution by Driver Characteristics 

The variables related to the driver’s characteristics considered in this study include 

driving under the influence (DUI) of drugs and alcohol.  

The work zone crash severity distribution in terms of alcohol and drug involvement 

is shown in Figure 3-11. As can be seen, although there is a huge difference between the 

number crashes in which the drivers were and were not correlated with DUI, the portion of 

fatality crashes were five and over six times higher for alcohol and drug involvement, 

respectively.  

  

  

Figure 3-11 Severity Distributions by DUI 
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The Pearson chi-squared tests ( 𝜒2=81.038, df=2 for alcohol use and 𝜒2=43.430, 

df=2) with both 𝑃 values equal to 0.00 (less than 0.05) had results that showed that there 

was a significant correlation between work zone crash severity and the DUI condition.  

3.2.5. Severity Distribution by Work Zone Characteristics 

Work zone characteristics in this study were considered the variables that indicated 

where the crash was located in the work zone location and work zone type.  

According to the National Work Zone Safety Information Clearinghouse, the main 

work zone components, in the order of entering the work zone location, include: before the 

first work zone warning sign, advance warning area, transition area, activity area, and 

termination area. Figure 3-12 demonstrates the severity distributions by crash location in 

work zone areas. As can be seen, the leading locations in work zones with the highest rates 

of fatality and injury crashes are activity area, transition area, advanced warning area, 

before the first work zone warning sign, and termination. The Pearson chi-squared test 

result (𝜒2= 27.656, df=8, and 𝑃= 0.001) indicates that there is a significant association 

between crash location in work zone and severity for the work zones crashes. 
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Figure 3-12 Severity Distributions by Crash Location in WZ 

Work zone was recorded as five types in the crash dataset, namely intermittent or 
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other types. Looking at the severity distributions by work zone types illustrated in Figure 
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closer were the work zone types with the highest proportion of fatality and injury crashes.  
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Figure 3-13 Severity Distributions by Work Zone Type 
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parameter transferability test statistically confirms whether the contributing factors to work 

zone crash severity are different by daytime and nighttime conditions. The identified 

variables in the logit model are then investigated in detail using the enhanced SVM 

approach. 

3.3.1. Binary Mixed Logit 

In studying crash severity, mixed logit models (MXLs), also called random 

parameters logit models, are the most popular among all econometric methods (Haleem et 

al. 2015, Behnood and Mannering 2017, Seraneeprakarn et al. 2017, Mokhtarimousavi et 

al. 2019). MXLs are used in safety analyses to estimate the relationship between 

explanatory variables and crash severity while considering the presence of unobserved 

heterogeneity. Allowing parameters to differ across observations, MXLs address the 

limitations of fixed parameter modeling approaches by accounting for heterogeneous 

effects and correlation with unobserved factors in crash data, which results in more reliable 

parameter estimates (Washington et al. 2010, Cerwick et al. 2014). For example, although 

it may be possible to estimate various crash characteristics and environmental 

characteristics based on crash data, there are several data items that influence crash 

occurrence and severity that are difficult to collect and are not normally available. The 

application of a random parameters model attempts to account for these unobservables and 

the resulting unobserved heterogeneity, which if not accounted for, can result in erroneous 

parameter estimates.  

For the current work, the binary mixed logit modeling framework (BMXL) is 

utilized. In this model, the estimated probability is considered the integral of the standard 
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logit probability over its corresponding parameter density (Ye and Lord 2014). The 

traditional binary logit model structure, in which the probability that an outcome (i.e., crash 

injury) takes on the value of 1, is shown in Equation (3-1):   

𝑃𝑛(𝑖) =
𝑒(𝜷𝒊𝑿𝒊𝒏)

1 + 𝑒(𝜷𝒊𝑿𝒊𝒏)
 (3-1) 

where 𝑃𝑛(𝑖) is the logit probability of crash 𝑛 resulting in crash severity 𝑖, 𝑿𝒊𝒏 is a vector 

of observable characteristics (i.e., variables shown in Table 1), and 𝜷𝒊  is a vector of 

parameters to be estimated for crash severity 𝑖.  

By extending Equation (3-1) to include the estimation of random parameters (i.e., 

a mixed model), a model with a mixing distribution is now defined as (McFadden and Train 

2000, Train 2009, Washington et al. 2010):  

𝑃𝑛(𝑖 | 𝛺) = ∫
𝑒(𝜷𝒊𝑿𝒊𝒏)

1 + 𝑒(𝜷𝒊𝑿𝒊𝒏)
𝑓(𝛽 | 𝛺)𝑑𝛽 (3-2) 

where 𝑃𝑛(𝑖 | 𝛺) is the mixed logit probability (weighted average of the MNL probabilities) 

with weights determined by the density function of 𝛽, 𝑓(𝛽 | 𝛺). The density function of 𝛽, 

𝑓(𝛽 | 𝛺), is conditional on distributional parameter 𝜴, where 𝜴 represents a vector of 

parameters (mean and variance) to be estimated. The distribution of Ω is specified by the 

analyst, and in most cases, is specified to be normally distributed (Mannering and Bhat 

2014, Mannering et al. 2016). In the end, by the addition of 𝑓(𝛽 | 𝛺), 𝛽 can now account 

for crash-specific variations of the effects of observable characteristics 𝑋𝑖𝑛  on crash 

severity 𝑖 probabilities. 
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Lastly, to assess the impact of an explanatory variable on the outcome probability 

of crash severity 𝑖, marginal effects are computed. Considering that all variables used in 

the modeling procedure are indicator variables, marginal effects are calculated as (Greene 

2018): 

𝑀𝐸𝑋𝑖𝑛𝑘

𝑃𝑛(𝑖)
= 𝑃𝑟𝑜𝑏[𝑃𝑛(𝑖) = 1 | 𝑋(𝑋𝑖𝑛𝑘), 𝑋𝑖𝑛𝑘 = 1] − 𝑃𝑟𝑜𝑏[𝑃𝑛(𝑖) = 1 | 𝑋(𝑋𝑖𝑛𝑘), 𝑋𝑖𝑛𝑘 = 0] (3-3) 

3.3.2. Parameter Transferability 

As stated previously, the next step is to determine if daytime and nighttime crashes 

need to be analyzed independently. To do this, a parameter transferability test is conducted. 

The parameter transferability test statistically tests if the estimated parameters in work zone 

crash severity models are significantly different between daytime and nighttime conditions. 

This is accomplished through a log-likelihood ratio test that follows a chi-square 

distribution with degrees of freedom equal to the number of estimated parameters, as 

computed in Equation (3-4) (Washington et al. 2010): 

𝑥2 = −2[𝐿𝐿(𝛽𝑀𝑋1𝑀𝑋2
) − 𝐿𝐿(𝛽𝑀𝑋1)] (3-4) 

where 𝐿𝐿(𝛽𝑀𝑋1𝑀𝑋2
) is the log-likelihood at convergence of model 𝑀𝑋1 based on using the 

time-period data for model 𝑀𝑋2, and 𝐿𝐿(𝛽𝑀𝑋1) is the log-likelihood at convergence of 

model 𝑀𝑋1. Suppose that the model for daytime crashes is fit using the data from nighttime 

crashes and vice-versa, hence, the original log-likelihood values are used to calculate the 

chi-square statistics. Finally, by considering the degrees of freedom (the number of 
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estimated parameters in the model using the other model’s data), the significance is 

determined. This log-likelihood ratio test examines the null hypothesis that daytime and 

nighttime crashes should be modeled together and that their contributing factors, or 

parameter estimates, are not statistically different. Therefore, this work seeks to determine 

whether or not this hypothesis is rejected. 

3.3.3. Support Vector Machine (SVM) 

Upon determining the significant contributing factors through the logit model and 

the results from the parameter transferability test, the SVM model is applied to capture 

crash severity patterns among all explanatory variables. SVM is a non-parametric 

supervised learning classification model introduced and developed by Vapnik et al. in the 

1990s (Boser et al. 1992, Vapnik 1998). Based on the statistical learning theory and 

structural risk minimization, the SVM algorithm aims to find (𝑛-1) dimensional separating 

hyperplanes (one hyperplane in binary classification problems), while simultaneously 

maximizing the distances of the nearest data points to the decision boundary (i.e., the 

margin). The hyperplane can be written as a set of points, 𝒙, as illustrated in Equation (3-

5):  

𝑦(𝑥) = 𝒘. 𝒙 + 𝑏 = 0 (3-5) 

where hyperplane 𝑦(𝑥) = 0 defines a decision boundary in the feature space, while the 

parameters of 𝒘 (a normal vector) 𝑏 (bias) are determined through the learning procedure. 

In order to find the optimal separating hyperplane, given a training set of explanatory 
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variables and severity outcomes pairs (𝑥𝑖, 𝑦𝑖), the SVM algorithm solves the quadratic 

optimization problem shown in Equation (3-6) (Bottou and Lin 2007):   

min 𝑄(𝑤, 𝑏, 𝜉) =
1

2
 ‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

 

Subject to, ∀𝑖 𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0,     

  (3-6) 

where 𝜙 is a feature vector, 𝜉 are slack variables measuring the misclassification errors, 

and 𝐶 represents a control (or penalty) variable for large and small margin violations.  

Ultimately, the SVM contains a subset of points of the two classes (crash severity 

outcomes) called support vectors. Along with the support vectors are a corresponding set 

of weights 𝒘 (one for each feature), also called alpha, on an optimal hyperplane in which 

the parameter bias defines the distance to the origin of the hyperplane. Furthermore, 

transformation into a higher-dimensional space for data which are not linearly separable in 

the original space is implemented by introducing the following kernel function: 

𝐾 (𝑥𝑖, 𝑥𝑗) ≡ 𝜙 (𝑥𝑖)
𝑇𝜙 (𝑥𝑗). Although several kernels have been developed and applied to 

SVM modeling, the Gaussian Radial Basis Function (RBF) is one of the more commonly 

used kernel functions. It has demonstrated better results in related works (Yu and Abdel-

Aty 2014, Mokhtarimousavi et al. 2019), and thus was used for crash severity analysis in 

this study. The RBF kernel is defined as: 
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𝐾𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝒙𝑖 × 𝒙𝑗) = 𝑒𝑥𝑝 (−
‖𝒙𝑖 − 𝒙𝑗‖

2

2𝜎2
) (3-7) 

Equation (3-7) illustrates the sigma selection process of the Gaussian RBF kernel 

for classifications where 𝜎 is considered to be 0.4. In this context, 𝜎 is the parameter that 

controls the width of the Gaussian.  

Traditionally, non-heuristic algorithms such as grid-search and gradient descent 

were applied to set SVM parameters (Chapelle et al. 2002, Keerthi 2002, Wang et al. 2005). 

These methods, however, are vulnerable to local optimum and cannot guarantee 

convergence to a global optimum (Mokhtarimousavi et al. 2014, Mokhtarimousavi et al. 

2015, Mokhtarimousavi et al. 2018, Shamshiripour and Samimi 2019, Mokhtarimousavi 

et al. 2021b). On the other hand, biologically-inspired metaheuristics such as the Genetic 

Algorithm (GA), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO), Fruit 

Fly Optimization Algorithm (FOA), etc., are more likely to result in finding the global 

optimum solution compared to the traditional aforementioned methods (Shen et al. 2016, 

Taghiyeh and Xu 2016, Mokhtarimousavi et al. 2018). 

Since the prediction performance of SVM in safety analysis can be significantly 

enhanced by tuning the model parameters (Mokhtarimousavi et al. 2019), the CS, a 

powerful metaheuristic algorithm for global optimization, was employed to tune the SVM 

parameters. A critical SVM parameter is 𝑏, which is the bias term. This term allows the 

SVM to pass the origin in order to determine a separating hyperplane with the maximum 

margin. Without the bias, the SVM will always go through the origin of the feature space. 

Another critical parameter is alpha, which is a vector of weights from which the hyperplane 
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is formed. Another parameter that will be tuned using the CS-SVM is the number of 

support vectors. 

3.3.4. Cuckoo Search (CS) Optimization Algorithm 

The final step, as stated previously, is the application of the CS algorithm. The CS 

algorithm is a swarm-intelligence metaheuristic algorithm developed by Xin-she Yang and 

Suash Deb in 2009 (Yang and Deb 2009), and in the case of the current work, was used to 

tune the SVM parameters. This nature-inspired metaheuristic mimics the breeding 

behavior of a specific bird family called “cuckoo.” In order to understand the cuckoo’s 

unique breeding behavior and how the algorithm employs this factor to find a global 

optimal solution, two concepts need to be explained. These two concepts will be discussed 

below. 

A. The Cuckoo’s reproduction strategy 

The cuckoo follows a unique reproduction system called “brood parasitism.” This 

strategy makes them dependent on other birds to hatch their eggs. The female cuckoo tries 

to find the nest of another species that recently laid eggs so that it will lay and hide its own 

eggs.  If the eggs are identified by the host bird, they may either be thrown away or the 

host bird will abandon the nest and make a new one. 

B. Lévy Flights 

In CS, a cuckoo searches for a new nest via Lévy flights, which is a forward-step 

technique that resembles movement by birds and animals. Lévy flights essentially follow 

a random process to search for food because the next step is based on the current location 

and the transition probability to the next location. This random walk is derived from a Lévy 

https://en.wikipedia.org/wiki/Xin-she_Yang
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distribution with an infinite variance and mean. Such behavior was applied to different 

optimization algorithms, and the results demonstrated its superiority and capability over 

other distributions, specifically in CS (Yang 2010). 

The procedure of CS algorithms to find global optimum solutions is based on three 

main rules (Yang and Deb 2009): 

 Each cuckoo dumps eggs on a randomly selected nest. 

 The best nest with the highest quality eggs (i.e., solutions) will be passed over 

to the next generation. 

 For a fixed number of available host nests, the egg laid by a cuckoo can be 

discovered by the host bird with the probability 𝑝 ∈ [0,1].   

When choosing a new random nest (i.e., generating new solutions), a Lévy flight is 

performed, as follows: 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛼 ⨁ 𝐿é𝑣𝑦 (λ)  (3-8) 

where 𝑋𝑖
𝑡+1 is a new solution and α (𝛼 > 0) is the step size associated with the scales of 

the problem. The product ⊕ means entry-wise multiplications. Lastly, the Lévy (λ) 

follows the Lévy distribution with an infinite variance and infinite mean (Yang and Deb 

2009): 

𝐿é𝑣𝑦 (λ)~𝑢 = 𝑡−𝜆 (3-9) 
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3.3.5. Random Forest (RF) 

The final technique applied in the current study is random forest (RF). RF, which 

was developed by (Breiman 2001), is essentially a collection of Decision Trees (DTs) and 

an ensemble machine learning technique that uses a bagging algorithm to generate multiple 

random decision trees to perform class predictions of each predictor. The RF functionality 

offers unbiased estimates of the classification error, which is also robust against over-fitting 

problems as those found in DTs (Shi and Abdel-Aty 2015, Taghiyeh et al. 2020). Variable 

selection is an important feature of RF, that as mentioned earlier, has been frequently used 

in safety studies. It was utilized in this study for the purpose of finding the important 

variables highly related to the response variable for the purpose of interpretation. This helps 

to achieve a more efficient statistical model estimate. Variable selection in RF is based on 

detecting the interactions between variables through a tree growing procedure, and 

recording the prediction error rates on out-of-bag (OOB) data (observations that are not 

used in training set) before and after random permutation of the predictor variable.  

In this study, using R, RF was developed to screen the importance of each indicator 

variable to be used in mixed logit modeling procedures. The most important variables were 

selected by monitoring the increase of prediction errors when OOB data (i.e., 30% of the 

training samples that are not used in the tree growth) were permuted for that variable, while 

all others were left unchanged (Liaw and Wiener 2002). 

3.4. Empirical Setting and Data 

In the present study, crash records are obtained from the Florida Signal Four 

Analytics tool (S4A 2018), which is a statewide interactive, web-based geospatial crash 

analytical tool. A three-year period of statewide crash data was collected from January 1, 
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2015 to December 31, 2017. Crashes that occurred in work zone areas with worker 

presence were then extracted from the crash records. The dataset contained a total of 

2,112,783 crash records, with 1.55% of the crashes occurring in work zones (i.e., 32,750 

occurred in work zones). Out of the total number of work zone crashes, 37.48% were 

associated with the worker presence. After data cleaning, a total of 12,042 usable crash 

records were identified from 2015 to 2017, in which there were 64 fatal crashes, 3,476 

injury crashes, and 8,502 no-injury crashes. Due to the low frequency of fatal crashes, fatal 

and injury crashes were combined to create one severity level referred to as 

“Fatality/Injury.” The other considered severity level is property damage only (PDO) or 

“No Injury.” According to the average times for sunset and sunrise conditions for the state 

of Florida (Timeanddate), two time periods, from 6:00  to 19:59 and 20.00 to 05:59, were 

considered for daytime and nighttime conditions. The frequency of the dependent and 

independent variables in the utilized dataset are shown in Table 3-1. 

Table 3-1 Variable Definition and Data Description 

Variable Decs Variable Name Crash Severity Levels Total 

  Fatality Injury No Injury  

  Percent Freq. Percent Freq. Percent Freq.  

Crash Severity SEV 0.53% 64 28.87% 3,476 70.60% 8,502 12,042 

Crash-Level          

Crash Time TOD        

Daytime DAYT 56.25% 36 74.97% 2,606 76.89% 6,537 9,179 

Nighttime NIGHTT 43.75% 28 25.03% 870 23.11% 1,965 2,863 

Crash Type CRSHTYP        

Backed Into CRSHTBI 1.56% 1 0.66% 23 2.40% 204 228 

Left Entering CRSHTLE 4.69% 3 5.58% 194 2.62% 223 420 

Left-Rear CRSHTLR 1.56% 1 1.78% 62 0.91% 77 140 

Off Road CRSHTOR 10.94% 7 7.77% 270 8.07% 686 963 

Parked Vehicle CRSHTPV 7.81% 5 2.93% 102 4.54% 386 493 

Pedestrian CRSHTPDS 20.31% 13 2.42% 84 0.15% 13 110 

Rear-End CRSHTRE 32.81% 21 61.25% 2,129 49.59% 4,216 6,366 

Right Angle CRSHTRA 4.69% 3 3.57% 124 2.38% 202 329 

Rollover CRSHTROLO 1.56% 1 2.19% 76 0.62% 53 130 

Same Direction 

Sideswipe 
CRSHTSDS 3.13% 2 6.39% 222 20.17% 1,715 1,939 

Single Vehicle CRSHTSV 10.94% 7 5.47% 190 8.55% 727 924 
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Table 3-1 Variable Definition and Data Description 

Road Surface 

Condition 
RDSURF 

      
 

Dry RDSURDR 93.75% 60 90.22% 3,136 90.41% 7,687 10,883 

Wet RDSURWT 6.25% 4 9.78% 340 9.59% 815 1,159 

Weather Condition WETHR        

Clear WTHRCLR 79.69% 51 74.31% 2,583 74.82% 6,361 8,995 

Cloudy WTHRCLD 15.63% 10 20.40% 709 19.44% 1,653 2,372 

Rain WTHRRIN 4.69% 3 5.29% 184 5.74% 488 675 

Road Sys Identifier RDWTYP        

County RDWTCNT 7.81% 5 10.33% 359 10.41% 885 1,249 

Interstate RDWTINTS 40.63% 26 36.39% 1,265 37.36% 3,176 4,467 

Local RDWTLOC 12.50% 8 10.70% 372 13.57% 1,154 1,534 

State RDWTST 28.13% 18 29.80% 1,036 27.44% 2,333 3,387 

Turnpike/Toll RDWTTRNT 4.69% 3 3.42% 119 3.93% 334 456 

U.S. RDWTUS 6.25% 4 9.35% 325 7.29% 620 949 

Number of Vehicle 

Involved in Crash 
NOVINV 

      
 

Single Vehicle NOVINVS 60.94% 39 83.86% 2,915 83.75% 7,120 10,074 

Multi Vehicle NOVINVM 39.06% 25 16.14% 561 16.25% 1,382 1,968 

Veh-Level          

Number of 

Passengers 
NUMPAS 

      
 

Driver Only NUMPSDO 60.94% 39 55.93% 1,944 68.27% 5,804 7,787 

Single Occupant NUMPSSO 7.81% 5 19.79% 688 12.22% 1,039 1,732 

Multi Occupant NUMPSMO 31.25% 20 24.28% 844 19.51% 1,659 2,523 

Alcohol Related ALCH        

Yes  89.06% 57 96.14% 3,342 98.32% 8,359 11,758 

No  10.94% 7 3.86% 134 1.68% 143 284 

Distraction 

Related 
DISTRL        

Yes  89.06% 57 79.49% 2,763 82.73% 7,034 9,854 

No  10.94% 7 20.51% 713 17.27% 1,468 2,188 

Work Zone          

Type of Work Zone WZTYP        

Intermittent or 

Moving Work 
WZTIMW 7.81% 5 5.41% 188 4.70% 400 593 

Lane Closure WZTLCL 29.69% 19 35.53% 1,235 37.07% 3,152 4,406 

Lane 

Shift/Crossover 
WZTLSHC 1.56% 1 8.72% 303 10.23% 870 1,174 

Work on Shoulder 

or Median 
WZTSHLM 60.94% 39 50.35% 1,750 47.99% 4,080 5,869 

Crash Location in 

Work Zone 
WZLOC        

Activity Area WZLACA 90.63% 58 70.11% 2,437 68.71% 5,842 8,337 

Advance Warning 

Area WZLADWA 
4.69% 3 9.67% 336 8.75% 744 1,083 

Before the First 

Work Zone 

Warning Sign 

WZLBFWS 1.56% 1 4.09% 142 4.76% 405 548 

Termination Area WZLCTRA 0% 0 1.99% 69 1.75% 149 218 

Transition Area WZLTRA 3.13% 2 14.15% 492 16.02% 1,362 1,856 

Law Enforcement 

in Work Zone 
LAWINF 

      
 

Yes  84.38% 54 81.33% 2,827 79.22% 6,735 9,616 

No   15.63% 10 18.67% 649 20.78% 1,767 2,426 
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3.5. Model Estimation Results 

3.5.1. Variable Importance 

The importance of variables was estimated by considering the mean decrease 

accuracy index, which is the decrease in model accuracy from permuting the values in each 

feature for explaining the target variable (i.e., severity levels). In order to obtain the 

sufficient number of trees to reach relatively stable results, the OOB error rate was 

monitored against a various number of trees, and the minimum rates were achieved using 

500 trees for both daytime and nighttime conditions. The final results for variable 

importance ranking are shown in Figure 3-14.  

  

Daytime Nighttime 

Figure 3-14 Variable Importance Ranking Using Random Forest  

In order to choose the most important covariates affecting severity in daytime and 

nighttime conditions, a cut-off value of 7 and 5 were considered, respectively. This led to 

selecting 21 candidate variables for daytime and 16 for nighttime to fit the mixed logit 

models. 
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3.5.2. Binary Mixed Logit Model Results 

Separate models have been generated for work zone crashes that involved workers. 

The mixed logit estimation results for the daytime and nighttime periods with 

corresponding marginal effects are presented in Table 3-2 and Table 3-3, respectively. In 

the estimation results, the random parameters were selected considering the statistically 

significant standard deviations for the normal distribution. In addition, the marginal effects 

were used to illustrate the injury-severity probability change due to a one-unit change in 

the explanatory variables. 

Table 3-2 Daytime Mixed Logit Model Estimation Results 

Variable Coefficient Std. Error t-statistic 
Marginal 

Effects 

Constant -3.516 0.321 -10.96  

(Std. Dev. Of Normally Distributed Random 

Parameter) 
(18.027) (0.802) (22.48)  

Work Zone Characteristics     

Work Zone Type (1 if Intermittent or Moving 

Work, 0 Otherwise) 
2.388 0. 289 8.25 0.001 

Work Zone Type (1 if Work on Shoulder or 

Median, 0 Otherwise) 
1.172 0.132 8.85 0.001 

Crash Characteristics     

Crash Type (1 if Rear-End, 0 Otherwise) -2.475 0.252 -9.80 -0.001 

(Std. Dev. Of Normally Distributed Random 

Parameter) 
(5.681) (0.273) (20.78)  

Crash Type (1 if Pedestrian Related, 0 Otherwise) 21.683 1.197 18.19 0.008 

Crash Type (1 if Same Direction Sideswipe, 0 

Otherwise) 
-11.330 0.570 -19.89 -0.004 

Crash Type (1 if Left Entering, 0 Otherwise) 2.793 0.074 7.48 0.001 

Crash Type (1 if Rollover, 0 Otherwise) 11.001 0.701 15.71 0.004 

Crash Type (1 if Single Vehicle, 0 Otherwise) -2.113 0.325 -6.51 -0.001 

Crash Type (1 if Backed-Into, 0 Otherwise) -13.34 0.843 -15.81 -0.005 

Crash Type (1 if Parked Vehicle, 0 Otherwise) -7.082 0.494 -14.33 -0.003 

Alcohol Related (1 if Yes, 0 if No) 6.836 0.676 10.11 0.003 

Environmental Characteristics     

Weather Condition (1 if Rainy, 0 if No) -1.268 0.247 -5.12 -0.001 

Number of Vehicle Involved (1 if Multiple 

Vehicles, 0 if No) 
2.490 0.320 7.77 0.001 

Number of Passengers (1 if Single Occupant, 0 if 

No) 
-1.636 0.198 -8.27 -0.001 

Number of Passengers (1 if Driver Only, 0 if No) -5.302 0.283 -18.73 -0.002 

Model Summary*     
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Table 3-2 Daytime Mixed Logit Model Estimation Results 

Number of Observations 9,179    

Log-Likelihood at Zero -5509.21    

Log-Likelihood at Convergence -5120.87    

Overall Prediction Accuracy 62.37%    

Sensitivity 34.63%    

Specificity 73.58%    

AUC 0.668    
*Analysis of Binary Choice Model Predictions Based on Threshold = 0.5000 

Table 3-3 Nighttime Mixed Logit Model Estimation Results  

Variable Coefficient 
Std. 

Error 
t-statistic 

Marginal 

Effect 

Constant -0.3251 0.116 -2.79  

(Std. Dev. Of Normally Distributed Random Parameter) (1.378) (0.769) (17.92)  

Work Zone Characteristics     

Law Enforcement in Work Zone (1 Y, 0 Otherwise) -0.638 0.088 -7.20 -0.095 

Crash Characteristics     

Crash Type (1 if Pedestrian Related, 0 Otherwise) 6.182 1.035 5.97 0.923 

Crash Type (1 if Single Vehicle, 0 Otherwise) -1.030 0.176 -5.83 -0.154 

Crash Type (1 if Left-Rear, 0 Otherwise) 1.007 0.384 2.62 0.150 

Crash Type (1 if Rear-End, 0 Otherwise) 0.552 0.109 5.04 0.082 

(Std. Dev. Of Normally Distributed Random Parameter) (1.020) (0.084) (12.10)  

Crash Type (1 if Same Direction Sideswipe, 0 

Otherwise) 
-2.959 0.350 -8.44 -0.442 

(Std. Dev. Of Normally Distributed Random Parameter) (3.379) (0.408) (8.28)  

Alcohol Related (1 if Yes, 0 if No) 1.429 0.180 7.91 0.213 

(Std. Dev. Of Normally Distributed Random Parameter) (2.798) (0.310) (9.01)  

Number of Passengers (1 if Driver Only, 0 if No) -1.171 0.100 -11.63 -0.175 

(Std. Dev. Of Normally Distributed Random Parameter) (3.112) (0.153) (20.28)  

Model Summary*     

Number of Observations 2,863    

Log-Likelihood at Zero -1780.77    

Log-Likelihood at Convergence -1621.53    

Overall Prediction Accuracy 61.37%    

Sensitivity 38.42%    

Specificity 71.86%    

AUC 0.693    
*Analysis of Binary Choice Model Predictions Based on Threshold = 0.5000 

3.5.3. Model Temporal Stability Test Results 

In regard to examining the temporal stability of model estimates across time periods 

(daytime vs. nighttime), applying Equation (3-4) results in a chi-square statistic of 4,136.78 
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and 7,928.2, with the corresponding degrees of freedom of 16 and 9 for MX1 and MX2, 

respectively. The significant difference between daytime and nighttime models suggests 

that work zone crashes that involve workers need to be modeled separately for safety 

analysis, with well over 99% confidence. This indicates that a single model, including 

daytime and nighttime crashes for the given data, would be incorrect. In other words, 

parameter estimates are statistically different for daytime and nighttime crash estimation 

and are not transferable between daytime and nighttime crashes. This finding is in line with 

a number of recent safety analysis studies that demonstrated separate injury-severity 

models that need to be estimated for different time periods (Behnood and Mannering 2015, 

Anderson and Dong 2017). 

3.5.4. SVM Results 

In this study, SVM models with RBF kernel function were coded in the MATLAB 

R2018b programming environment. To better assess the model prediction performance, 

the entire daytime and nighttime datasets were randomly separated into three sub-datasets 

(a training set and a testing set) with a ratio of 6:4 (i.e., 60% for training and 40% for 

testing), 7:3, and 8:2. Preliminary performance test results illustrated in a format of 

confusion matrices in Figure 3-15 reveal that SVM models with the split of 7:3 performed 

better in both daytime and nighttime models. This split ratio was therefore selected for 

further model prediction performance improvement through the application of CS 

metaheuristic optimization in parameter tuning.  

Considering the fact that the performance of metaheuristic algorithms is also 

significantly influenced by the proper tuning of their parameters, a Taguchi’s robust design 
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method was used to obtain the best parameters of the CS algorithm (for detailed 

information regarding the Taguchi method, readers are referred to (Peace 1993)). In 

performing the Taguchi test, a number of 1,000 iterations, population size of 100, step size 

equal to 0.1 and discovery rate equal to 0.6 were utilized when using CS algorithms. 

   
Split of 6:4 for Daytime Dataset Split of 7:3 for Daytime Dataset Split of 8:2 for Daytime Dataset 

   
Split of 6:4 for Nighttime Dataset Split of 7:3 for Nighttime Dataset Split of 8:2 for Nighttime Dataset 

Figure 3-15 SVM Confusion Matrices of Different Data Splits 

In the assessment of the prediction performance of the CS-SVM models, the 

following criteria were calculated:  

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 × 100% 

(3-10) 



54 

Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 × 100% (3-11) 

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 × 100% (3-12) 

Where the parameters in the equations refer to true positive (TP), true negative 

(TN), false positive (FP), and false negative (FN) counts. Accuracy measures the overall 

effectiveness of a classifier by its percentage of correct predictions. Sensitivity shows the 

effectiveness of a classifier to identify positive labels, while specificity illustrates this for 

negative labels. In addition, the area under the receiver operating characteristic curve 

(AUC) criterion, which is recognized as one of the best measures to evaluate two-class 

classification models, is calculated as proposed in (Bradley 1997). This metric reflects the 

model performance based on the True Positive Rate (TPR) and the False Positive Rate 

(FPR) parameters at all classification thresholds, which in fact is the number of times a 

failure is ranked below a non-failure in the list. The detailed classification results of the 

final CS-SVM model are included in Table 3-4. 
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Table 3-4 Results of CS-SVM Models 

CS-SVM Confusion Matrices Accuracy Sensitivity Specificity AUC 

Daytime Model 

 
No 

Injury 
Injury 

84.00% 98.71% 48.71% 0.8811 
No 

Injury 
1917 

(69.6%) 
416 

(15.1%) 

Injury 
25 

(0.9%) 

395 

(14.3%) 

Nighttime Model 

 
No 

Injury 
Injury 

89.40% 97.32% 71.37% 0.9033 
No 

Injury 
580 

(67.6%) 
75 

(8.7%) 

Injury 
16 

(1.9%) 
187 

(21.8%) 

 

3.5.5. Variable Impact Analysis 

In order to quantify the contribution of the explanatory variables to the probability 

distribution of work zone crash severities, a two-stage sensitivity analysis was conducted. 

This method was recently adopted in SVM safety studies to identify the relationships 

between crash injury severity and various explanatory variables (Li et al. 2012, Yu and 

Abdel-Aty 2013, 2014, Chen et al. 2016, Khoda Bakhshi and Ahmed 2020). In this method, 

the value of each explanatory variable is replaced with a user-defined value (the same value 

is used for all input variables), while the others remain unchanged (Esmaeilzadeh and 

Mokhtarimousavi 2020). Then, the corresponding probabilities of the severity outcomes 

(No Injury and Fatality/Injury in this study) before and after this perturbation are simulated 

in CS-SVM models and recorded. The results are shown in Tables 3-5 and 3-6 for daytime 

and nighttime models, respectively.  
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Table 3-5 CS-SVM Daytime Variable Impact Analysis 

Variable Severity Variable Severity 

 
No  

Injury 
Fatality/Inj  

No  

Injury 
Fatality/Inj 

Crash-Level Variables   Dry 0.862 0.138 

Crash Type   Wet 0.806 0.194 

Backed Into 0.829 0.171 Vehicle-Level Variables   

Left Entering 0.777 0.223 Number of Passengers   

Left-Rear 0.785 0.215 Driver Only 0.883 0.117 

Off-Road 0.792 0.208 Single Occupant 0.821 0.179 

Parked Vehicle 0.827 0.173 Multi Occupant 0.776 0.224 

Pedestrian 0.767 0.233 Alcohol Related   

Rear-End 0.849 0.151 Yes 0.785 0.215 

Right Angle 0.798 0.202 No 0.867 0.133 

Rollover 0.771 0.229 Distraction Related   

Same Direction 

Sideswipe 
0.863 0.137 Yes 0.818 0.182 

Single Vehicle 0.819 0.181 No 0.867 0.133 

Weather Condition   Work Zone Variables   

Clear 0.857 0.143 Type of Work Zone   

Cloudy 0.825 0.175 Intermittent or Moving Work 0.787 0.213 

Rain 0.808 0.192 Lane Closure 0.838 0.162 

Road Sys Identifier   Lane Shift/Crossover 0.811 0.189 

County 0.828 0.172 Work on Shoulder or Median 0.854 0.146 

Interstate 0.843 0.157 Crash Location in Work Zone   

Local 0.838 0.162 Activity Area 0.861 0.139 

State 0.829 0.171 Advance Warning Area 0.814 0.186 

Turnpike/Toll 0.813 0.187 
Before the First Work Zone 

Warning Sign 
0.806 0.194 

U.S. 0.793 0.207 Termination Area 0.795 0.205 

Number of Vehicle 

Involved in Crash 
  Transition Area 0.827 0.173 

Single Vehicle 0.801 0.199 
Law Enforcement in Work 

Zone 
  

Multi Vehicle 0.857 0.143 Yes 0.813 0.187 

Road Surface Condition   No  0.864 0.136 
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Table 3-6 CS-SVM Nighttime Variable Impact Analysis 

Variable Severity Variable Severity 

 
No  

Injury 
Fatality/Inj  

No  

Injury 
Fatality/Inj 

Crash-Level Variables   Dry 0.804 0.196 

Crash Type   Wet 0.782 0.218 

Backed Into 0.787 0.213 Vehicle-Level Variables   

Left Entering 0.774 0.226 Number of Passengers   

Left-Rear 0.778 0.222 Driver Only 0.830 0.170 

Off-Road 0.792 0.208 Single Occupant 0.777 0.223 

Parked Vehicle 0.790 0.210 Multi Occupant 0.750 0.250 

Pedestrian 0.764 0.236 Alcohol Related   

Rear-End 0.768 0.232 Yes 0.739 0.261 

Right Angle 0.776 0.224 No 0.814 0.186 

Rollover 0.780 0.220 Distraction Related   

Same Direction 

Sideswipe 
0.819 0.181 Yes 0.786 0.214 

Single Vehicle 0.795 0.205 No 0.802 0.198 

Weather Condition   Work Zone Variables   

Clear 0.805 0.195 Type of Work Zone   

Cloudy 0.784 0.216 Intermittent or Moving Work 0.765 0.235 

Rain 0.777 0.223 Lane Closure 0.813 0.187 

Road Sys Identifier   Lane Shift/Crossover 0.797 0.203 

County 0.795 0.205 Work on Shoulder or Median 0.760 0.240 

Interstate 0.810 0.190 Crash Location in Work Zone   

Local 0.756 0.244 Activity Area 0.806 0.194 

State 0.778 0.222 Advance Warning Area 0.772 0.228 

Turnpike/Toll 0.810 0.190 
Before the First Work Zone 

Warning Sign 
0.788 0.212 

U.S. 0.758 0.242 Termination Area 0.756 0.244 

Number of Vehicle 

Involved in Crash 
  Transition Area 0.797 0.203 

Single Vehicle 0.795 0.205 
Law Enforcement in Work 

Zone 
  

Multi Vehicle 0.793 0.207 Yes 0.823 0.177 

Road Surface Condition   No  0.763 0.237 

 

3.6. Discussions  

A total of 23 indicator variables were found to be significant throughout the daytime 

and nighttime logit models, with five variables being significant in both models. Of the 

five variables found to be significant in both models, three have heterogeneous effects on 

crash severity outcomes in the nighttime model: sideswipe crashes in the same direction, 

alcohol consumption, and driver-only involvement. Although these variables were found 
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to have heterogeneous effects in the nighttime model, their effects in the daytime model 

were homogeneous.  

To facilitate the discussion, the contributing factors according to the daytime and 

nighttime crash severity models and their effects will be discussed separately. Discussion 

of the contributing factors will be followed by a comparison of the results from both 

models. 

3.6.1. Daytime Crash Severity Models 

As for random parameters, rear-end crash type is the only variable found to have a 

normally distributed estimated random parameter. Model estimates show that the 

parameter for rear-end crash type has an estimated mean of -2.475 and an estimated 

standard deviation of 5.681. These estimates indicate that the estimated parameter mean is 

greater than zero for 33.15% of crashes and less than zero for 66.85% of crashes. That is, 

33.15% of rear-end crashes are more likely to result in an injury, and 66.85% are less likely 

to result in an injury. As stated by (Wang et al. 1996), rear-end crashes increased 

significantly in work zone locations. In addition, rear-end crashes were found to be the 

prominent crash type in work zones (Srinivasan et al. 2007). Sudden stops, following too 

closely while drivers are distracted due to cell phone use, and distraction with worker 

presence or work zone equipment are all factors more likely to be the reported cause for 

rear-end crashes (Osman et al. 2018). Therefore, the significance of this variable in a work 

zone context is anticipated. As for the heterogeneous effects on crash severity, a potential 

reason may stem from the differences in speed limits, driver compliance, and location 

where the crash occurred. Specifically, work zones often have a lower speed limit (i.e., 
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speed drop). Subsequently, if a rear-end crash occurs at lower speeds, a rear-end crash in 

which no injury is sustained can be expected. However, if drivers are distracted at the start 

of the work zone or do not comply with the lower speed limit, rear-end crashes will occur 

at higher speeds, resulting in the likelihood of a more severe crash involving injuries. 

The abovementioned results are consistent with the CS-SVM (referred to as SVM 

for the remainder of this section) daytime output. Based on the variable impact analysis of 

the SVM model, it was found that drivers are more likely to suffer severe and fatal injuries 

in pedestrian-related, rollover, and left-entering work zone crashes, but less likely in 

backed-into, same direction sideswipe, parked vehicle, single vehicle, and rear-end crashes. 

Rear-end crashes and sideswipe crashes in the same direction have the lowest probabilities 

of fatality/injury crashes with 0.151 and 0.137, respectively. On the other hand, with 4.48% 

and 2.69% lower probabilities when compared to pedestrian-related and rollover crashes, 

left-entering crashes are among the top three crash types that result in more severe crashes. 

Figure 3-16 illustrates the effects of different crash types sorted from those with the highest 

to lowest impacts, on fatality/injury crashes obtained from the daytime SVM model. 
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Figure 3-16 Effect of Crash Type on SEV, CS-SVM Daytime Model 

3.6.2. Nighttime Crash Severity Models 

A total of eight indicator variables were found to be significant in the nighttime 

model, where four of the eight variables were found to have heterogeneous impacts on 

crash severity outcomes. As previously stated, sideswipe crashes in the same direction, 

alcohol consumption, and driver-only involvement factors were found to be significant in 

both daytime and nighttime models. However, in the nighttime model, these three factors 

were found to have normally distributed random parameters. With a mean of -2.959 and 

standard deviation of 3.379, 19.06% (greater than zero) of sideswipe crashes in the same 

direction in worker-involved work zone crashes are more likely to result in fatality/injury 

crashes. Simultaneously, 80.94% (less than zero) of sideswipe crashes in the same direction 

are associated with crashes in which no injury was sustained. The heterogeneous nature 
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may have linked with the unobservables related to nighttime conditions, such as the level 

of lighting present in the work zone or the ability to see reflective vests worn by workers.   

The second variable to have a normally distributed estimated random parameter is 

the indicator for drivers under the influence of alcohol. With a mean of 1.429 and standard 

deviation of 2.798, 30.48% of crashes involving a driver under the influence of alcohol are 

less likely to result in severe injury crashes, and 69.52% are more likely. With a higher 

likelihood of alcohol consumption during nighttime hours, the significance of this variable 

is expected (Yasmin et al. 2014). The heterogeneous nature is consistent with findings from 

previous works. For example, (Xie et al. 2012) found that driving under the influence 

increases the likelihood of a no-injury crash. 

The majority of work, however, found alcohol to increase the likelihood of a severe 

injury crash (Kockelman and Kweon 2002, Qi et al. 2005, Bai and Li 2007, Harb et al. 

2008, Morgan and Mannering 2011, Xiong et al. 2014, Chen et al. 2015). This is in 

agreement with the results from the present work that found that the majority have an 

increase in the severe injury likelihood. In addition, these results are in-line with the results 

of the developed SVM model, where the SVM model shows a 40.32% higher probability 

of a severe crash if the driver was driving under the influence of alcohol.  

The driver-only indicator variable is the last indicator to have a normally distributed 

estimated random parameter, with a mean of -1.171 and a standard deviation of 3.112. This 

indicates that 35.34% (greater than zero) of crashes are associated with only one driver in 

the vehicle and are more likely to result in a severe injury, whereas 64.66% of only crashes 

with one driver (less than zero) are less likely to result in severe crashes. To be more 

specific, the majority of driver-only vehicles involved in work zone crashes with workers 
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were less likely to result in severe injury crashes. Although a proportion of single occupant 

crashes increases the likelihood of a more severe crash, the majority of single occupant 

crashes decreases the likelihood. It has been shown that the increase in the number of 

occupants increases work zone crashes (Ozturk 2014, Osman et al. 2018). It was found that 

there was a 95 percent level of significance correlation between the number of occupants 

involved and work zone crash severity (Ozturk 2014). The increase in likelihood may be 

capturing unobservable characteristics related to the driver, which are not included in the 

data. The same results obtained with the SVM model show that multi-occupant vehicles 

have 12.10% and 47.05% higher probabilities of being in severe crashes compared to 

single-occupant and driver-only conditions in work zone locations. This may be attributed 

to distracted driving (i.e., a driver’s attention can be diverted away from the driving task) 

as a result of distractions by vehicle occupant/occupants. This may affect a driver’s ability 

to safely perform the driving task. 

The final indicator in the nighttime model with an estimated random parameter is 

the indicator for rear-end crashes. Like the daytime model, rear-end crashes were again 

heterogeneous for the nighttime model. The mean of 0.552 and the standard deviation of 

1.020 indicates that while 29.42% of the distribution is less than zero, the majority of rear-

end crashes are associated with a higher probability of crash severity at 70.58%. This 

parameter may be capturing unobservables related to weather conditions. For instance, it 

was found by (Qi et al. 2005) that there is a correlation between weather conditions and 

the severity of rear-end crashes in work zone accidents. This is in-line with the SVM 

variable impact analysis results that indicate that drivers are more likely to suffer from 

fatality/injury in work zone crashes in rainy weather conditions with an increase in the 
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probability to 0.223. This is 3.24% and 14.35% higher than when in cloudy and clear 

weather conditions, which is equal to 0.216 and 0.195, respectively. A possible explanation 

for this finding may be the reduction of braking capacity due to wet and slippery road 

surface conditions, low visibility, lighting glare, and lack of alertness (Abaza et al. 2017). 

This parameter may also be attempting to capture unobservables related to driver-specific 

information, such as perception reaction time, visual acuity, bone mass, etc. (Mannering et 

al. 2016).  

Other significant variables, such as pedestrian-related, single vehicle, and left-rear 

crash types, have significant impacts on the probability of a crash resulting in an injury. 

The analysis of marginal effects shows that pedestrian-related and left-rear crashes have a 

0.923 and 0.150 higher probability of resulting in severe crashes. On the other hand, single 

vehicle involvement in work zone crashes have a 0.154 lower probability of resulting in a 

severe crash, based on the marginal effect analysis. This result is not only consistent with 

the SVM output that shows a lower probability of single vehicle involvement compared to 

multi-vehicle in severe injuries, but is also consistent with the findings of previous studies 

on work zone injury severity (Katta 2013, Dias 2015).  

Previous studies related to injury severity of work zone crashes have lacked the 

consideration of variables related to the presence of law enforcement. The results from this 

study illustrate that law enforcement had a significant effect on crash severity and decreases 

the likelihood of severe crashes. To be specific, the BMXL model indicates that for a one-

unit increase in law enforcement (in other words, going from absence to presence of law 

enforcement), we expect a 0.095 decrease in the probability of the dependent 

variable severity, holding all other independent variables constant. The same conclusion 
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can be inferred from the SVM results. It was shown that of the crash occurrences in 

nighttime work zones while workers are present, the absence of law enforcement is 

associated with approximately a 34.0% higher probability of severe injuries. This result 

illustrates that the use of proper temporary traffic control (i.e., stationary enforcement, 

circulating enforcement, etc.) is essential to warning drivers that they are approaching a 

work zone location, especially where workers are present.  

 
Daytime Nighttime 

Figure 3-17 Critical Locations in Work Zone1 

                                                 

1 The darker the color, the higher probability of severe crashes in that location. 
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Finally, using the results from the SVM variable impact analysis, a heat map was 

created on a typical work zone layout to visualize the critical locations of work zone 

configuration for worker safety. The heat map is shown in Figure 3-17.  

As observed in Figure 3-17, the termination area is the most critical location that 

increases the likelihood of severe crashes in both daytime and nighttime work zones. This 

area, in terms of impact on severity, is followed by the area before the first work zone sign 

in the daytime and the advance warning area in the nighttime work zones. This finding may 

be attributed to a driver's intention to speed as they are exiting the work zone area, which 

is consistent with the findings of (Osman et al. 2018). The effects of speed variation on 

crash severity and frequency was also recently investigated in (Kamrani et al. 2018, Arvin 

et al. 2019b, a, Parsa et al. 2019b), and their results demonstrated that higher speed 

volatility is associated with a higher likelihood of crash occurrence. 

3.7. Summary and Conclusions 

In this chapter, the contributing factors of crash severity in work zone crashes that 

involved workers was investigated to determine the most important factors and their 

corresponding impacts on crash severity. Florida work zone crashes between 2015-2017 

were the focus of the analysis. Descriptive analysis was used to test the relationships 

between crash severity and numerous variables. Significant contributing factors were 

included within the binary level severity models for both daytime and nighttime crashes. 

The findings of the study on work zone crash severity, crash severity modeling and analysis 

are summarized below. 
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Awareness of worker safety in construction work zone-related crashes represents a 

significant concern in roadway safety since it causes worker casualties. Different studies 

have been conducted to investigate the crash characteristics of nighttime and daytime 

construction activities, while the statistical reasons for these characteristics have not been 

known in the past. In addition, worker presence and its impact on severity in work zone 

crashes has remained unexplored. To address this gap in research, this study was 

undertaken to empirically examine the crash severity contributing factors by time-of-day 

for worker-involved work zone crashes. First, in order to facilitate the modeling 

procedures, random forest models were initially developed to select influential explanatory 

variables associated with crash severity. Assuming that the Florida crash data used for the 

current study was susceptive to heterogeneity, the potential candidate variables were then 

estimated utilizing a mixed logit modeling framework.  

Likelihood ratio tests were conducted to examine the overall temporal stability of 

model estimates for severity outcomes (No Injury and Fatality/Injury). Marginal effects of 

each explanatory variable were also considered to investigate the effects of individual 

parameter estimates on work zone injury-severity probabilities. The results of a parameter 

transferability test demonstrated significant temporal instability among parameter 

estimates, which implies that worker-involved work zone crashes need to be modeled 

separately by time-of-day. 

Due to the limitations of parametric models, such as the pre-assumption of data 

distribution and linear form of utility functions, which may not necessarily be applicable 

for crash data, non-parametric SVM models were also utilized to predict the entire set of 



67 

explanatory variables in both models 2 . Since the prediction performance of SVM 

classification can be significantly enhanced by tuning its hyper-parameters, a higher level 

of performance is achieved by employing the CS metaheuristic optimization algorithm in 

SVM parameter tuning. When comparing the model performance, CS-SVM produced a 

higher percentage of correct prediction of the severity levels by 35.04% for daytime and 

38.81% for nighttime compared to the SVM models, which were also higher than those 

produced by the BMXL model by 62.37% and 61.37%, respectively. This implies the 

ability to apply SI optimization techniques in SVM parameter selection to achieve higher 

prediction performance.  

Although the prediction accuracy is the most intuitive measure of assessing 

classification models, higher prediction accuracy is not the only advantage of the proposed 

SVM models over the binary mixed logit models. Aside from prediction accuracy, other 

prediction metrics were considered for the models’ goodness-of-fit comparison. For 

instance, the value of the AUC metric for the CS-SVM daytime model by 0.8811 and the 

nighttime model by 0.9033 is also substantially higher than that of the BMXL models by 

0.6680 and 0.6926, respectively. These improvements may also be associated with 

consideration of the nonlinearity between the explanatory variables and severity outcomes, 

which is in line with the funding of previous studies such as (Yu and Abdel-Aty 2014) and 

                                                 

2 It should be noted that some indicator variables have been excluded from the input variables for the BMXL 

models due collinearity (collinearity also implies correlation). This is a common issue in parametric statistical 

modeling approaches to estimating the relationship between crash variables and severity, which may reduce 

the total estimation accuracy. Applying machine learning techniques can relieve this issue as the geometric 

feature of variables is considered (i.e., distances between data points) and not just the linear relationship, 

which may lead to better prediction outcomes. 
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(Chen et al. 2016). In addition, conducting a two-stage sensitivity analyses (i.e., data 

perturbation and before-after comparison), the effects of each explanatory variable on the 

probability distribution of crash severity outcomes has been quantified. The results 

obtained from here demonstrate that driver alcohol involvement, rainy weather condition, 

wet road surface, multi-occupant for vehicle occupancy, and distraction are the most 

significant causes of fatalities/injuries in work zone crashes involving workers in both 

daytime and nighttime models. In terms of the variables, which are the number of vehicle-

involved and law enforcement indicators, a mixed effect was found between daytime and 

nighttime conditions. 

Non-parametric models like SVMs lack the ability to recognize significant 

variables affecting the response variable (outcome). On the other hand, the results from 

statistical methods do not show where the variable effect stands among all of the variables 

within each category. Taking this into consideration, the integration of the traditional 

statistical model and machine learning technique results enhance the understanding of work 

zone crash characteristics to interpret the effects of work zone presence on crash severity 

outcome. In addition, this research is based on a three-year statewide work zone crash 

dataset, where a sufficient number of crashes were considered in the modeling frameworks. 

This may eventually lead to valuable comparative information about these types of crash 

characteristics and provide safety experts and decision makers with the ability to prioritize 

the work zone operations based on different temporal, environmental, and 

geospatial conditions toward roadway user and worker safety. 

In addition to previous works, (Li et al. 2012, Yu and Abdel-Aty 2013, Chen et al. 

2016) investigated the application of SVM models for crash injury severity analysis.  
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Though the researchers pointed out several limitations of kernel function selection or the 

appropriate split of training and testing datasets, their paper sheds more light on parameter 

tuning. Realizing the importance of the parameter tuning process on the prediction 

performance of ML models is a distinguished line of research that has extended the 

application of swarm intelligence algorithms. It has been shown that incorporating 

metaheuristic optimization in SVM parameter tuning can significantly enhance the 

prediction performance of this supervised learning method. Although this line of research 

is very promising, the amount of studies that address this issue is still relatively scarce. In 

a bid to contribute to this growing body of knowledge to achieve higher model 

classification performance, future investigation can focus on applying different features 

and parameter selection techniques on different machine learning methods.  

From a statistical modeling perspective, the ability of a model to accurately predict 

outcomes is just as important as its ability to explain causal factors, and current traffic 

safety literature lacks such a discussion. Thus, a deeper examination of model outcomes is 

necessary in traffic safety analysis to avoid any misunderstanding of the impact of 

contributing factors. Investigating different methods to evaluate variable importance when 

predicting the target variable to improve statistical model prediction power deserves more 

serious consideration for future research. Moreover, investigation of the similarities and 

differences of risk factors in work zone crash severities with or without worker presence 

by time of day may be of interest for future studies. 
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CHAPTER 4 

CRASH FREQUENCY MODELING OF WORK ZONE CRASHES 

4.1. Introduction 

Construction work zones are one of the top priorities for transportation safety 

analysts, as they pose a huge challenge to roadway safety. Placing construction machinery 

on blocked travel lanes while construction crews are working, and changes in driving 

characteristics such as speed, lane changing maneuvers, etc., make the environmental and 

geometric characteristics of work zones prone to crash occurrence. In order to come up 

with the strategies to minimize the adverse effects of construction work zones, studying 

the risk factors and how work zone safety is affected by them is an area in need of greater 

research. Crash characteristics differ from location to location, as well as over time, along 

with varying features of participants at fault, environmental and geometrical conditions, 

and social factors.  

It is often inevitable to establish work zones on roadways for construction activities 

such as bridge construction, bridge repair, or rehabilitation activities. In addition, although 

there would be a number new bridges being constructed (as the current chapter of this study 

is focused on), during the next decade in the state of Florida, there is a strong indication 

that emphasis will be placed on maintenance and rehabilitation of the existing bridges 

rather than on the construction of new ones. According to American Road & Transportation 

Builders Association (ARTBA) (ARTBA 2020) and Federal Highway Administration 

(FHWA) National Bridge Inventory (NBI) (NBI 2020), out of 12,518 bridges in Florida, 

361 are classified as structurally deficient, which accounts for 2.9% of the total bridges in 
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this state. Moreover, vehicles are restricted to crossing over 965 bridges due to loading 

restrictions, which may lead to an inefficient traffic flow in roadway networks.   

Although the impact of work zone presence on crash frequency has been 

investigated and has shown increasing crash rates in previous studies such as (Khattak et 

al. 2002, Ullman et al. 2008, Jin and Saito 2009, Ozturk 2014), work zone type 

specifications have not been investigated yet, and the risk factors associated with work 

zone crash frequency at bridge locations are not fully understood. With this in mind, this 

study is focused on investigation of the contributing factors that affect crash frequency at 

bridge-related construction work zones. To this end, a Negative Binomial (NB) regression 

model and a Support Vector Regression (SVR) model were developed for modeling work 

zone crash frequency. 

In this regard, a unique dataset was created, including work zone crashes that 

occurred in 60 bridge locations in Miami-Dade County. The dataset used for frequency 

analysis was integrated with crash data (three years of work zone crashes), road inventory 

data (Annual Average Daily Traffic (AADT), truck AADT, posted speed limit, roadway 

function classification, etc.), bridge geometric specification (median type, shoulder type, 

median width, shoulder width, surface width, curve indicator, number of lane), bridge 

location specifications (intersection, ramp, and horizontal curve indicators), and work zone 

related data (percentage of law enforcement and workers involvement).  

The remainder of this chapter is organized as follows: the descriptive statistics of 

crash frequency for all work zone crashes involving workers that occurred in Florida 

between 2015 to 2017 are presented in the next section, followed by the details of the 

modeling frameworks and model specifications. The data used for the selected bridge 
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locations in Miami-Dade County between 2015 and 2017 is explained in Section 4-4, and 

then the model estimation and research results are discussed in Section 4-5. A discussion 

is provided in Section 4-6, and finally, the key findings, research outcomes, and concluding 

remarks are summarized in Section 4-7. 

4.2. Descriptive Statistics for Crash Frequency 

In this section, all work zone crashes involving workers were included in the 

descriptive analysis. The Florida work zone crash frequency and related parameters for the 

years 2015 to 2017 were described in the following order: crash frequency by temporal 

variables, crash attributes, environmental condition, driver characteristics, and work zone 

characteristics.  

4.2.1. Frequency Distribution by Temporal Variables  

The annual crashes between 2015 and 2017 for both work zone crashes and the 

crashes that involved workers are shown in Figure 1-1. The crash trend shows that the 

number of work zone accidents in Florida increased year by year, from 10,162 accidents 

in 2015 to 11,285 in 2017 (i.e., 11% increase). Although the number of worker-involved 

work zone crashes increased by 409 from 2015 to 2016, they decreased by 128 from 2016 

to 2017, which shows an almost 7% increase from 2015 to 2017. The temporal distribution 

of work zone crashes over the studied three-year period, which includes monthly, day of 

week, and hourly distributions, are shown in Figure 4-1 to 4-3, respectively. 

As shown in Figure 4-1, March, April, and August shared the highest number of 

crashes with 1,428, 1,310, and 1,291 respectively, while the minimum number of crashes 

observed in January, September, and December were 1,036, 1,080, and 1,089. The lower 
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number of crashes in December and January are excepted, as there are fewer working days, 

and thus, fewer active work zones during these two months of the year.   

 

Figure 4-1 Monthly Distribution of Work Zone Crashes  
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occurring between 4:00–8:00 p.m.), and nighttime (crashes occurring between 8:00 p.m.–

6:00 a.m.), consisted of 24.2%, 43.4%, 10.0%, and 23.3%, respectively.  

  

Figure 4-2 Daily Distribution of Work Zone Crashes 

 

Figure 4-3 Hourly Distribution of Work Zone Crashes 
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This data indicated that the number of morning peak and nighttime time periods 

shared almost the same number of work zone crashes involving workers. This shed lights 

on the importance of nighttime work zones in traffic safety analysis. 

4.2.2. Frequency Distribution by Crash Attributes 

In line with the previous literature (Chambless et al. 2002, Qi et al. 2013, Ozturk 

et al. 2014) and as illustrated in Figure 4-4, rear-end crashes stand as the most frequent 

crash type in the work zone crashes involving workers by 46.4% of total crashes.  

 

Figure 4-4 Work Zone Crashes Divided by Crash Types 
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The second crash attributes considered in the current study were the total number 

of crashes divided by the number of vehicles involved (i.e., single versus multi-vehicle), 

as shown in Figure 4-5. In this study, crashes with only one vehicle involved was 

considered a single-vehicle crash, and work zone crashes involving more than one vehicle 

were considered multi-vehicle work zone crashes. 

 

Figure 4-5 WZ Crashes Divided by Number of Vehicle Involved 
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number of crashes between the presence and absence of law enforcement. Over 80% of 

work zone crashes occurred when there was no law enforcement present.   

 

Figure 4-6 WZ Crashes Divided by Law Enforcement Presence 
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Figure 4-7 WZ Crashes Divided by Weather Condition 
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Figure 4-8 WZ Crash Type by Weather Condition 
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number of work zone crashes on wet surface conditions is reasonable due to the fact that 

drivers tend to be more cautious and lower their speed on wet surfaces.   

 

Figure 4-9 WZ Crashes Divided by Surface Condition 
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Figure 4-10 WZ Crashes Divided by DUI Condition 
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(34.1%), while intermittent or moving work zones stand as the safest work zone type by 

5% of total crashes. The same statistics found in (Dias 2015) for work zone crashes 

occurred in Kansas.  

 

Figure 4-11 WZ Crashes Divided by Location in WZ 
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4.3. Methodology 

While the previous chapters of this study focused on the factors that contributed to 

work zone crash severity and were then investigated and analyzed, this section studies the 

variables that impact the number of crashes at work zone locations.  

Among all statistical modeling approaches used to capture the relationship between 

the number of crashes occurring on specific roadway segments over a time period and 

selected contributing factors, the Negative Binomial (NB) regression model has been 

frequently applied. As the main feature of the NB approach, it can handle the 

overdispersion characteristic of crash-frequency data (i.e., when the variance exceeds the 

mean of the crash counts), which is commonly available in crash frequency datasets. Thus, 

it is applied in the current study.  

The application of machine learning techniques in crash frequency analysis has 

been recently gained attention among traffic safety researchers. From all modeling 

approaches, the Support Vector Regression (SVR) model is one of most applied models. 

Like other non-parametric approaches and compared to traditional parametric models, it 

does not need a pre-assumption of data distribution and can usually provide a better 

statistical fit than traditional statistical models. With this in mind, an SVR modeling 

approach was also applied in this research to study crash frequency. Since machine learning 

models have always been criticized for working like a black-box, in which the impact of 

independent variables on the response variable cannot be explored, a sensitivity analysis 

was also performed to reveal the impact of selected contributing factors on work zone crash 

frequency.  
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An extensive review of crash frequency modeling and analysis was conducted by 

Lord and Mannering (Lord and Mannering 2010), Mannering and Bhat (Mannering and 

Bhat 2014), and Yang et al. (Yang et al. 2015). For additional details of the methodological 

frontier in crash frequency analysis, readers are referred to the aforementioned 

publications.   

4.3.1. Negative Binomial (NB) regression 

A Negative Binomial (NB) regression model was used in this study to model crash 

frequency, where the response variable is the total crash count (nonnegative integer) for a 

given period of time. The NB regression model is derived from the Poisson regression 

model.  Its principle elements are shown below in Equation (4-1) (Washington et al. 2010): 

𝑃(𝑦𝑖) =
𝐸𝑋𝑃(−𝜆𝑖)𝜆𝑖

𝑦𝑖

𝑦𝑖!
 (4-1) 

where 𝑃(𝑦𝑖) is the probability of work zone location 𝑖  having 𝑦𝑖  observed number of 

accidents per defined period of time. The 𝜆𝑖 is the Poisson parameter for work zone work 

zone location 𝑖, which is equal to work zone location 𝑖′𝑠 expected number of crashes as a 

function of explanatory variables, as shown in Equation (4-2):  

𝜆𝑖 = 𝐸𝑋𝑃(𝛽𝑋𝑖) (4-2) 

The Poisson regression model’s interpretation is based on the implicit assumption 

of that the variance is equal to the mean, and thus would come with an analysis error where 
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this assumption has been violated. The NB model however, counts for overdispersion 

through an error term 𝜀𝑖, as expressed below in Equation (4-3): 

𝜆𝑖 = 𝐸𝑋𝑃(𝛽𝑋𝑖 + 𝜀𝑖) (4-3) 

The 𝐸𝑋𝑃(𝜀𝑖) is a Gamma-distributed disturbance term, which allows the variance 

to differ from the mean in the crash frequency model, as follows (Washington et al. 2010): 

𝑉𝐴𝑅[𝑦𝑖] = 𝐸[𝑦𝑖][1 + 𝛼𝐸[𝑦𝑖]] = 𝐸[𝑦𝑖] + 𝛼𝐸[𝑦𝑖]
2 (4-4) 

 where 𝛼 refers to the overdispersion parameter and the overdispersion rate is: 

𝐸(𝑌𝑖) = 𝜆𝑖;                           𝑉𝑎𝑟(𝑦𝑖) 𝜆𝑖⁄ = 1 + 𝛼𝜆𝑖 (4-5) 

If 𝛼 found to significantly differ from zero, the negative binomial model will be a 

good fit to be applied in such a count data (as in this study), otherwise a Poisson model 

should be used. The negative binomial distribution form is illustrated in Equation (4-6). 

𝑃(𝑦𝑖) =
𝛤((1/α) + 𝑦𝑖)

𝛤(1/α) + 𝑦𝑖!
 (

1/𝛼

(1/𝛼) + 𝜆𝑖
)1/𝛼 + (

𝜆𝑖

(1/𝛼) + 𝜆𝑖
)𝑦𝑖 (4-6) 

where 𝛤(∙) is a gamma function. The likelihood function is derived from the formulation 

(4-6), as shown in Equation (4-7) (Washington et al. 2010): 
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𝐿(𝜆𝑖) = Π𝑖

𝛤((1/α) + 𝑦𝑖)

𝛤(1/α) + 𝑦𝑖!
 (

1/𝛼

(1/𝛼) + 𝜆𝑖
)1/𝛼 + (

𝜆𝑖

(1/𝛼) + 𝜆𝑖
)𝑦𝑖 (4-7) 

4.3.2. Support Vector Regression (SVR) 

The concepts of SVM presented in Chapter 3 can also become applicable for 

regression problems (i.e., when the response variable is continuous).  

In the context of supervised Machine Learning (ML), SVR is a generalization form 

of SVM, in which it attempts to estimate the mapping multivariate function from the input 

variables (set of explanatory variables) to a continuous-valued output variable (number of 

crashes at each work zone location). This generalization is accomplished by introducing 

the concept of 𝜀-tube, which is an 𝜀-insensitive region around the multivariate function 

(Awad and Khanna 2015). The graphical demonstration of on-dimensional SVR 

algorithms are shown in Figure 4-14.  
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Figure 4-14 A Geometrical Perspective of a Linear SVR 

Considering a regression function, as defined in Equation (4-8), that is trained on a 

crash  dataset 𝑋 , where 𝑋 = {𝑢𝑖 , 𝑣𝑖;       𝑖 = 1, … , 𝑛 }  with 𝑢𝑖  considered the crash 

contributing factors (input vectors), 𝑣𝑖 is the number of observed crashes (linked targets), 

and 𝑤  is the vector of coefficients. A function 𝑔(𝑢)  will be used to illustrate the 

relationship between crash frequency and the number of contributing factors. 

𝑔(𝑢) = 𝑤. 𝑢 + 𝑏 
(4-8) 

In SVM regression, understanding how the algorithm model dataset is achieved 

occurs through the application of the loss function. Different loss functions such as linear, 



87 

quadratic, and exponential have been applied to SVR models in literature;  however, the 

standard Vapnik’s 𝜀-insensitive loss function is applied in the current study, as shown in 

Equation (4-9);    

𝐿𝜀(𝜐, 𝑔(𝑢)) = {
0                               for |𝜐 − 𝑔(𝑢)| ≤ 𝜀                                
|𝜐 − 𝑔(𝑢)| − 𝜀                otherwise                                      

 
(4-9) 

where the 𝐿𝜀(𝜐, 𝑔(𝑢))  demonstrates the deviation of the estimated function from the 

observed function (Deka 2014).  

Consider the regression function presented in Equation (4-8), where 𝑤 ∈ 𝑋 and 𝑋 

is the input space, 𝑏 is the bias term (𝑏 ∈ 𝑅) that determines the margin of hyperplane from 

support vectors, and (𝑤. 𝑢) is a dot product of vectors 𝑤 and 𝑢, and the SVR formulates 

the function approximation as an optimization problem. The optimization problem aimed 

to find the best tube (i.e., narrowest with more flatness), while minimizing the prediction 

error (i.e., the distance between the observed and the predicted outputs). In the optimization 

problem, the flatness can be achieved by minimizing the norm ‖𝑤‖2 , while the 

error/outliers is controlled through the slack variables (𝜉𝑖 and 𝜉𝑖
∗) by which the deviation 

of the training sample outside of the 𝜀-insensitive zone is evaluated and is penalized via 

the parameter 𝐶 in the estimated function. The formulation of the optimization problem is 

shown in Equation (4-10) (Deka 2014, Awad and Khanna 2015):  
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min𝑤,𝑏,𝜉𝑖,𝜉𝑖
∗           

1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 

                            𝑣𝑖 − (𝑤. 𝑢𝑖 + 𝑏) ≤ 𝜀 + 𝜉𝑖 

subject to            (w. 𝑢𝑖 + 𝑏) − 𝑣𝑖 ≤  𝜀 + 𝜉𝑖   

                               𝜉𝑖 + 𝜉𝑖
∗ ≥ 0,      𝑖 = 1,2, … , 𝑛 

(4-10) 

As in classification problems (i.e., when the response variable is discrete), in order 

to deal with nonlinearity, the SVR model is also characterized by the use of kernels. Let 

introduce 𝜑(𝑢) be a non-linear function to map 𝑢𝑖 into a higher dimensional feature space. 

Thus, the decision function 𝑔(𝑢) will be reformed by: 

𝑔(𝑤, 𝑏) = 𝑤. 𝜙(𝑢) + 𝑏 (4-11) 

Similarly, the optimization problem can be generalized for nonlinear regression 

problems, as shown in Equation (4-12): 

min𝑤,𝑏,𝜉𝑖,𝜉𝑖
∗           

1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 

                            𝑣𝑖 − (𝑤. 𝜙(𝑢𝑖) + 𝑏) ≤ 𝜀 + 𝜉𝑖 

subject to            (𝑤. 𝜙(𝑢𝑖) + 𝑏) − 𝑣𝑖 ≤  𝜀 + 𝜉𝑖   

                               𝜉𝑖 + 𝜉𝑖
∗ ≥ 0,      𝑖 = 1,2, … , 𝑛 

(4-12) 
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Finally, the estimated function of the nonlinear SVR with incorporation of the 

kernel function as 𝐾(𝑢(𝑖), 𝑢(𝑗)) = (𝜙(𝑢𝑖), 𝜙(𝑢𝑗)) is expressed as follows: 

𝑔(𝑢) = ∑ (𝛼𝑖
∗ − 𝛼𝑖)𝐾(𝑢𝑖. 𝑢) + 𝑏

𝑙

𝑖,𝑗=1

 
(4-13) 

where 𝛼𝑖
∗ and 𝛼𝑖 are Lagrange multipliers which lie between 0 and the value of the penalty 

parameter 𝐶. The nonlinear SVR with Vapnik’s ε-insensitive loss function adapted from 

(Deka 2014) and (Yu et al. 2006) is shown in Figure 4-15.  

The kernel function is the most significant component of SVR models by which the 

model prediction performance can be highly impacted. An appropriate selection of the 

kernel function leads the model to better transform data points from low dimensional to a 

higher dimensional data space. It can also better cope with potential non-linear relationship 

between dependent and independent variables. Different kernel functions have been 

developed and applied to SVR (and SVM) models in the literature, including linear, 

polynomial, Gaussian (or RBF), and Sigmoid kernel functions; however, as discussed in 

the previous chapter, RBF was applied in this study.   
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Figure 4-15 A Geometrical Perspective of a Non-Linear SVR 

Like SVM models, SVR prediction performance is highly dependent on tuning the 

model’s hyper-parameters. To this end, the Artificial Bee Colony (ABC) optimization 

algorithm was employed to tune SVR hyper-parameters. The parameters impact the 

perdition performance of a non-linear SVR model, include the following: 

 Set of support vectors: A matrix corresponding to support vectors in the normalized 

data space, which attempts to find the right level of the slack variable. 

 Alpha: A vector of weights from which the hyperplane is formed. 

 The term bias: It allows the SVM model to pass the origin in order to come up with 

a separating hyperplane with the maximum margin. 
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4.3.3. Artificial Bee Colony (ABC) 

The Artificial Bee Colony (ABC) algorithm is another swarm intelligence-based 

metaheuristic algorithm in the area of optimization proposed by Karaboga (Karaboga 

2005). The ABC mimics the intelligent foraging behavior of honey bees. In the ABC 

model, the initial population of artificial bees is categorized in three main groups to execute 

different tasks:  employed bees, onlooker bees, and scout bees. The employed bees search 

for food sources, evaluate the quality of the food sources and keep the locations of high-

quality sources in their memory. Once they are back in their hive, they share the memorized 

food source information to other bees by performing a dance (i.e., waggle dance), and the 

higher quality the food source, the longer the dance. The onlooker bees’ duties are to 

explore rich food sources (considering the dance time of employed bees), while the other 

food sources around the hive will be randomly explored by the scout bees. After each food 

source is explored by the employed bees and is then consumed by the onlooker bees, the 

scout bees begin finding new food sources by making random searches. In other words, the 

number of employed bees is equal to number of food sources, and each food source is 

considered a possible solution for the optimization problem.   

In summary, the ABC model structure for an optimization problem consists of four 

main phases: initialization phase, employed bees phase, onlooker bees phase and scout bees 

phase. The explained tasks are employed in the ABC algorithm in each phase to explore 

the search space of an optimization problem in order to find optimum solutions.  

In the first phase of the ABC algorithm, the food sources are randomly produced in 

the search space, through Equation (4-13), while the quality of each food source is 

evaluated by its fitness function in the employed bees’ phase. The procedure of improving 
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each self-solution obtained by employed bees in the second phase is illustrated in Equation 

(4-14) (Kiran et al. 2015). 

𝑋𝑖
𝑗

= 𝑋𝑙𝑜𝑤
𝑗

+ 𝑟𝑖
𝑗

× (𝑋𝑢𝑝
𝑗

𝑋𝑙𝑜𝑤
𝑗

)     𝑖 = 1,2, … , 𝑁 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝐷 (4-13) 

Where, 𝑋𝑖 is the jth dimension of the ith solution in the search space (i.e., each solution 𝑋𝑖 

is a D-dimensional vector), 𝑋𝑙𝑜𝑤 and 𝑋𝑢𝑝 represent the upper and lower bounds for the jth 

dimension, and 𝑟𝑖  is a random number between 0 and 1.  

𝑁𝑖
𝑗(𝑡 + 1) = 𝑋𝑖

𝑗(𝑡) + 𝑟 × (𝑋𝑖
𝑗(𝑡) − 𝑋𝑘

𝑗(𝑡))   𝑖 = 1,2, … , 𝑁, 𝑖 ≠ 𝑘 𝑎𝑛𝑑 𝑗 ∈ {1,2, … , 𝐷} (4-14) 

The procedure of mimicking employed bees’ behaviors to find better food sources 

in the vicinity of memorized food sources is illustrated in Equation (4-14). Where 𝑋𝑖
𝑗(𝑡) is 

the food source in mind (i.e., ith solution), 𝑁𝑖
𝑗(𝑡 + 1) is the candidate food source in the 

neighborhood of 𝑋𝑖
𝑗(𝑡) at iteration t. 𝑋𝑘

𝑗(𝑡) is the food source, which is randomly selected 

for the jth dimension of the ith solution. In each iteration, the newly found solution is 

compared to the previously found solution. If it is better, it will be memorized; otherwise, 

the next iteration will be abandoned. 

In the second phase, the selection of food sources by onlooker bees is based on how 

rich the food source is (i.e., fitness value) probabilistically. The computational formula is 

illustrated as follows (Kiran et al. 2015): 

𝜌𝑖(𝑡) =
𝑓𝑖𝑡 (𝑡)

∑ 𝑓𝑖𝑡𝑛(𝑡)𝑁
𝑛=1

 (4-15) 
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Where 𝜌𝑖(𝑡) is the chance of the ith solution’s selection by an onlooker bee. In the 

next step, the selected solution found by the employed bee will be improved by the 

onlooker bee, as explained in Equation (4-14). Then, the evaluation of the solution will be 

repeated again. 

In the last phase, at the end of every cycle, the employed bee, whose solution cannot 

be improved after a predefined number of trials (called “limit”), converts to a scout bee. 

Also, the worst solution is abandoned, and the bee convert becomes a scout bee. The 

random search process for exploring new food sources begins again with the converted 

scout.  

4.4. Empirical Setting and Data 

A three-year monitoring period from 2015 to 2017 was carried out on a number of 

bridge locations in Miami-Dade County. During the period of observation, crash data were 

collected from the S4 crash database for crash records that were marked as work zone-

related crashes. These crashes were extracted 300-350 ft. (adjusted) from upstream and 

downstream of bridge locations through overlaying analysis in ArcGIS tool. In addition to 

crash records, traffic flow condition, roadway and bridge geometric design features were 

also taken into account in order to create a unique crash dataset for performing crash 

frequency analysis.  

In order to have a crash dataset that contains sufficient information in predictor 

variables to model crash frequency, bridge locations were selected from the point of view 

of incorporating a wide range of bridge geometric features, such as length, number of lanes, 

and span length on different road functional classifications.   
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Finally, 60 bridge locations that also matched FDOT’s District 6 construction 

activities information were selected for the crash frequency analysis. The locations of the 

selected bridges in Miami-Dade County are marked and illustrated in Figure 4-16.  

 

Figure 4-16 Locations of the Selected Bridges  

Roadway characteristics, including functional class, number of lanes, type of road, 

etc., were extracted from FDOT’s Roadway Characteristics Inventory (RCI) and RCI GIS 

shapefiles. The historical traffic flow related variables, including annual average daily 
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traffic (AADT) and annual average daily truck volume were extracted along roadways 

from the Florida Traffic Online website and were averaged for the three-year period.  

Considering that a bridge is a specific road segment, it may share different roadway 

characteristics, such as median and shoulder types/widths, compared to those available for 

roadway segments. This information for some specific roadway segments such as bridge 

locations may not be even available in the database. In addition, bridge surface width may 

not to be the same as traveling lanes along roadways.  

With this in mind and to avoid bias, a GIS tool was applied to manually measure 

the geometric features of each bridge location. In addition, due to bridge construction 

activities, some bridge geometric features may change across the time period. Hence, using 

the construction activities information from FDOT’s District 6, the impact of construction 

on bridge-specific variables were monitored via Google Earth Pro toll. Thus, the bridges 

that had traffic going through during the construction period was selected. An example of 

bridge median and surface measurements is shown in Figure 4-17, followed by 

construction activities on a bridge location in Figure 4-18.  

  

Figure 14-17 Bridge Shoulder and Median Width Measurements  
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12-2014 

 
1-2016 

 
3-2017 

 
12-2017 

Figure 4-18 A Bridge Construction Activity Over Time 

Since work zone crashes in both directions were considered at bridge locations (i.e., 

not a directional investigation of crash frequency), the information regarding shoulder and 

median upstream and downstream of the bridge were excluded from further analysis. 

The outside shoulders are available in the RCI database in ten categories; however, 

shoulder types in bridges only included five of the defined types, as illustrated in Figure 4-

19. Median types were also defined in the RCI database in ten categories, but the selected 

bridges were categorized as six types:  barrier wall, paved median, paved with barrier other 

than guardrail, paved with guardrail, raised traffic separator, and no median.  
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Curb & Gutter 

 
Paved with Guardrail 

 
Paved with Barrier Wall 

 
Curb & Gutter 

 
Paved with Warning Device 

 

Figure 4-19 Bridge Shoulder Types 

Four bridge exposure variables, including horizontal curve, ramp, intersection and 

express lane, were considered for the crash frequency dataset. The indicator variable 

“Express lane” indicates whether it is available on the bridge location, while the rest of 

variables were considered if they existed on the bridge location or 300-350 ft. (adjusted) 
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upstream or downstream of bridge location. The examples of bridge exposure variables are 

shown in Figure 4-20.   

 
Exposure of Intersection 

 
Exposure of Curvature 

 
Exposure of Ramp  

 
Exposure of Express lane 

Figure 4-20 Bridge Exposures Variables 

The final variable definitions used in the frequency models are shown in Table 4-

1, followed by a Summary Statistics displayed in Table 4-2. 
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Table 4-1 Variable Definition for Frequency Model 

Variable 

Name 
Definition  Variable Type 

WZCRSH 

Number of work zone crashes occurred 

on the bridge deck or 300-350 

upstream/downstream of the bridge 

Response variable- Continuous 

BRLNG 
Bridge span, measured by subtracting 

ending milepost and beginning milepost 
Continuous 

WRKINV Percentage of crashes involved workers Continuous 

LWENINV 
Percentage of crashes in which law 

enforcement were present 
Continuous 

WZTYP Type of work zone 

1. Intermittent or Moving Work 

Categorical 
2. Lane Closure 

3. Lane Shift/Crossover 

4. Work on Shoulder or Median 

AADT 
Annual average daily traffic volume 

along roadway 
Continuous 

TRKAADT 
Annual average daily truck volume 

along roadway 
Continuous 

NUMLN Number of lanes on the bridge Continuous 

HCRIND 

If horizontal curve present on the bridge 

or 300-350 upstream/downstream of the 

bridge 

Indicator 

RMPIND 
If ramp present on the bridge or 300-350 

upstream/downstream of the bridge 
Indicator 

INTIND 

If intersection present on the bridge or 

300-350 upstream/downstream of the 

bridge 

Indicator 

EXLIND If express lane present on the bridge  Indicator 

PSPD Posted speed limit Continuous 

RODFUN Roadway functional classification 

1. Major Collector 

Categorical 

2. Minor Arterial 

3. Arterial-Freeways and 

Expressways 

4. Arterial-Interstate 

5. Arterial-Other 

BRSRWTH Bridge surface width  Continuous 

BRMDTYP Bridge median type 

1. Barrier Wall 

Categorical 

2. No median 

3. Paved Median 

4. Paved with Barrier other than 

Guardrail 

5. Paved with Guardrail 

6. Raised Traffic Separator 

BRMWTH Bridge width of median Continuous 

BRSHLDT Bridge shoulder type 

1. Curb & Gutter 

Categorical 

2. Paved with Barrier Wall 

3. Paved with Guardrail 

4. Paved with Warning Device 

5. Raised Curb 

BSHLWTH Bridge width of shoulder Continuous 
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Table 4-2 Summary Statistics for Work Zone Crash Data 

Variable  Minimum Maximum Mean SD 

Total Crash Records (N=60) 1 43 8.43 11.63 

Bridge Length (ft) 53 2450 371.72 468.85 

% of Worker Involvement 0 100 56.97 38.42 

% of Law Enforcement 0 100 37.78 36.95 

Work Zone Type 1 4 2.67 0.98 

AADT/1000 6.4 245.7 107.75 82.81 

Truck AADT/1000 0.33 35.16 6.10 6.063 

Number of Lane 1 6 3.08 1.109 

Horizontal Curvature Indicator (Yes=1, No=0) 0 1 0.22 0.42 

Ramp Indicator (Yes=1, No=0) 0 1 0.38 0.49 

Intersection Indicator (Yes=1, No=0) 0 1 0.35 0.48 

Express Lane Indicator (Yes=1, No=0) 0 1 0.20 0.40 

Posted Speed Limit (mph) 15 65 47.67 11.95 

Road Functional Classification 1 5 3.23 1.155 

Bridge Surface Width (ft) 12 72 36.43 13.36 

Bridge Median Type 1 6 2.467 1.74 

Bridge Median Width (ft) 0 53 8.45 9.45 

Bridge Shoulder Type 1 5 2.23 0.10 

Bridge Shoulder width (ft) 0 14 6.77 3.60 

 

4.5. Model Estimation Results 

In the current study, as in severity analysis, the statistical model’s estimations were 

undertaken using NLOGIT and Econometric Software version 6, and the MATLAB 

R2018b programming environment was used to implement machine learning models.  

Four evaluation metrics were measured in order to assess the prediction 

performance of the developed NB and SVR models, as well as for comparison purposes, 

as proposed in (Oh et al. 2003) and applied in previous transportation safety-related 

literature (Li et al. 2008, Gu et al. 2018).  

The R-squared statistic (also known as the coefficient of determination) is the 

goodness-of-fit, which is computed from the predictions to actual values and measures how 

close the data are to the fitted regression line. Mean Absolute Deviation (MAD) measures 

how close the predictions are to the actual number of crashes. Mean Squared Error (MSE) 

is the average of the sum of the squares of the difference between the predicted number of 
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crashes and the observed ones, and Root Mean Squared Error (RMSE) is simply the square 

root of the MSE metric.  

These above-mentioned metrics are described below in Equations (4-16) to (4-19); 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 
(4-16) 

𝑀𝐴𝐷 =
1

𝑛
∑|�̂�𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 (4-17) 

𝑀𝑆𝐸 =
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 (4-18) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (4-19) 

where �̅�  stands for the average value of bridge related work zone crashes, �̂�𝑖  is the 

predicted number of crashes at bridge location 𝑖 and 𝑦𝑖 is the observed number of work 

zone crashes. 

The model’s results are presented separately in the following subsections. 

4.5.1. Negative Binomial (NB) Regression Model Results  

In this section, in order to prove if a negative binomial distribution is an appropriate 

fit for our crash data, we first checked for the presence of “overdispersion.” In other words, 
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we checked if the response variable follows the Poisson distribution (i.e., as the null 

hypothesis). In this regard, a non-parametric 1-sample K-S test was performed on SPSS. 

The results shown in Table 4-3 indicate that considering crash counts with the mean of 

8.433 and the standard deviation of 11.626, the null hypothesis can be rejected with well 

over 95% confidence. Thus, the negative binomial is an appropriate approach for modelling 

the random variation of the number of work zone crashes, as there is clear evidence of 

overdispersion presence. 

Table 4-3 One-Sample Kolmogorov-Smirnov Test 

One-Sample Kolmogorov-Smirnov Test 

 Number of WZ crashes (2015-2017) 

N 60 

Poisson Parametera,b Mean 8.433 

Most Extreme Differences 

Absolute .556 

Positive .556 

Negative -.187 

Kolmogorov-Smirnov Z 4.306 

Asymp. Sig. (2-tailed) .000 

a. Test distribution is Poisson. 

b. Calculated from data 

 

The estimated parameters from the NB modeling results are shown in Table 4-4 

and were used to investigate the relationship between the contributing factors as 

independent variables and crash frequency of bridge-related work zone crashes. The 

comparison between actual crash frequencies and predictions of the NB model on the basis 

of bridge locations is shown in Figure 4-21. 

The McFadden Pseudo R-squared value of the 0.08 form model summary in Table 

4-4 indicates a reasonable model fit and is based on the Chi squared value.  The model is 

significant at 1% confidence level. The positive value of Alpha, which is significant with 

well over 99% confidence level, also demonstrates that the data is overdispersed.  As for 
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interpretations of the results, a positive sign of the estimated parameters implies increased 

crash frequency with an increase in the value of the independent variable. For a one-unit 

change in the predictor variable, the difference in the logs of expected counts of the 

response variable is expected to change by the respective regression coefficient, given the 

other predictor variables in the model are held constant3. 

Table 4-4 Results of NB Model and Marginal Effects 

Variable  Coefficient Std. Error t-Statistic Marginal Effect 

BRMDTYP4|     1.081** 0.497      2.18 12.439 

LWENINV|    -1.028** 0.504    -2.04   -8.790 

BRSRWTH|      0.029*** 0.010      2.87 0.247 

HCRIND|     -0.892** 0.434     -2.06 -5.612 

BRMDTYP6|     -0.665* 0.402     -1.65 -4.315 

Constant 1.267*** 0.397      3.19  

𝛼 0.782*** 0.295 2.65  

Summary statistics     

Number of observations 60    

Log-Likelihood at Convergence -175.691    

Log-Likelihood at Zero -190.529    

McFadden Pseudo R-squared 0.08    

R-squared 0.180    

MAD 5.521    

MSE 50.495    

RMSE 7.105    

***, **, *, are Significance at 99%, 95%, 90% confidence levels 

 

                                                 

3 For more detail on model explanation please see “NEGATIVE BINOMIAL REGRESSION | STATA 

ANNOTATED OUTPUT” https://stats.idre.ucla.edu/stata/output/negative-binomial-regression/ 

https://stats.idre.ucla.edu/stata/output/negative-binomial-regression/
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Figure 4-21 NB Model, Actual Vs. Predicted Crash Frequency 

4.5.2. Support Vector Regression (SVR) Model Results 

In this study, as it was mentioned earlier, the SVR model with the RBF kernel 

function was implemented in the MATLAB R2018b programming environment.  

Three different data splits of 60, 70, and 80 for training and testing sets were 

considered first to assess the SVR model prediction’s abilities, as well as to select the model 

to be trained (i.e., in order to tune the algorithm hyper parameters) by ABC algorithm. The 

selected data set was then used for comparison purposes with the NB model, as well as to 

implement the sensitivity analysis in order to explore the impacts of contributing factors 

on bridge-related crash frequency.  

To this end, the entire dataset was randomly separated into three sub-datasets as 

stated, and the R-squared statistic (coefficient of determination) was considered a criterion 

to select the initial model. The results are illustrated in Figure 4-22.  
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Figure 4-22 R-Squared Statistics on Different Data Splits 

Preliminary performance test results reveal that the SVR model with the split of 8:2 

performed better than the other data splits (i.e., higher R-squared value). Thus, these results 

were considered for further model prediction performance improvement through the 

application of ABC metaheuristic optimization in parameter tuning. 

As  explained in the previous chapter for crash severity analysis, the performance 

of metaheuristic algorithms is also considerably influenced by the proper tuning of 
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parameters, and a Taguchi’s robust design method was used to obtain the best parameters 

of the ABC algorithm (for detailed information regarding the Taguchi method, readers are 

referred to (Peace 1993)). In performing the Taguchi test, all of the combinations of 

parameter settings were examined, along with the best achieved combination considering 

the S/N ratio plot. Finally, a number of 1,000 iterations, colony size of 100, and limit of 

search and scouts of 10 were utilized when using ABC algorithms to train the SVR model. 

The prediction results of SVR models, which were implemented on the entire dataset, is 

summarized in Table 4-5, and the output of ABC-SVR is provided in Figure 4-23. 

Table 4-5 Results of SVR Models 

Model R-squared MAD MSE RMSE 

SVR 0.324 5.666 106.117 10.301 

ABC-SVR 0.542 4.249 64.086 8.005 

 

 
Predicted vs. Observed 

 
Fitted Line 

 
Prediction Errors 

 
Error Distribution 

Figure 4-23 ABC-SVR Model Output 
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Since the contributing factors in a crash dataset comes with different units and 

magnitudes, and the SVR model basically works with the geometric features of data points, 

for the purpose of performing sensitivity analysis, the data for each variable needed to be 

normalized. This may also improve the prediction performance of the SVR model. With 

this in mind, the final ABC-SVR model was fitted again with a normalized dataset to 

extract the impact of contributing factors on bridge-related work zone crash frequency. The 

data normalization was accomplished through the following equation (Li et al. 2008): 

𝑥𝑛𝑖 =
𝑥𝑖 − min (𝑥𝑖)

max (𝑥𝑖) − min (𝑥𝑖)
 (4-20) 

where 𝑥𝑖 is the vector representing the independent variables. 

As in other machine learning models, SVR works like a black-box, in which the 

impact of explanatory variables has not been understood, as they do not have a specific 

functional form like traditional statistical models. To this end, the method originally 

proposed by Fish and Blodgett in (Fish and Blodgett 2003), was conducted on the ABC-

SVR to explore the impacts of each explanatory variable on work zone crash frequency.  

The sensitivity analysis consisted of recording variation from the response variable 

(crash frequency) for different values of independent variables (crash contributing factors), 

one at the time. These variations, which are also normalized, are for a continuous variable 

that lies between its mean and standard deviation (plus and minus), within a reasonable 

interval. Categorical variables vary among all of the categories, except for the reference 

variable, since it keeps all other variables unchanged.  
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The sensitivity results for the variables were found to be statistically significant in 

the NB model, including bridge median type, presence of law enforcement, bridge surface 

width, and horizontal curve, which is shown in Figure 4-24.  

 
Bridge Median Type 

 

 
Law Enforcement 

 

 
Bridge Surface Width  

 

 
Horizontal Curve 

 

Figure 4-24 ABC-SVR Sensitivity Analysis 

4.6. Discussions 

Out of a total of 34 indicator variables, the impact of five variables were found to 

significantly affect the work zone crashes that occurred in bridge locations in the NB 

model. The coefficient of the variables that were not found statistically significant was 



109 

eliminated in the model output. As presented in Table 4-4, the greater the coefficient, the 

higher the likelihood of having a work zone crash at bridge locations. In addition, the 

marginal effect was also computed to approximate how much crash frequency is expected 

to change (either decrease or increase) for a unit change of the explanatory variables.  

The interpretation of the obtained results from both modeling approaches are 

discussed below: 

As for bridge median type indicators, a paved median with a barrier other than a 

guardrail is associated with a higher probability of crash occurrence at bridge locations. 

The positive coefficient value indicates that the crash risk on a paved median with barriers 

is higher than other types of bridge median by 12.439. It was also shown that raised traffic 

separators on the median results in a 4.315 decrease in the likelihood of crash occurrence 

at bridge locations. The results from the ABC-SVR sensitivity analysis also shows that the 

probability of median type 4 is 56.91% higher than type 6, and 3.85 compared to 2.466. In 

other words, bridges with concrete barrier medians are more probable to results in a crash 

than a bridge with guardrail barriers and raised traffic separators. This is consistent with 

the results found in (Montella 2010), which demonstrated that concrete barriers, when 

compared with steel barriers, were more expected to result in severe crashes. In another 

study, it was shown that 91.98% of cross medians and median barrier crashes occurred on 

the roadways with concrete barriers, while just 1.08% of crashes occurred on roadways 

with guardrails (Chitturi et al. 2011).  

As found in work zone crash severity models, law enforcement was found to have 

statistically significant contributing factors to crash frequency. According to the negative 

binomial results, a marginal effect of -8.790 indicated that law enforcement presence had 
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a significant impact in preventing work zone crashes on bridge locations. The ABC-SVR 

model results also demonstrate that, by one unit change in the law enforcement variable 

(i.e., going from presence to absence of law enforcement), the mean predicted probability 

of a crash occurring at a bridge location will increase by 211.76%, or from 1.7 to 5.3. This 

result is in line with the previous studies that revealed the positive impact of law 

enforcement on crash reduction, including work zone crashes (Chen and Tarko 2012), 

alcohol-impaired driving crashes (Fell et al. 2014), motor-vehicle crashes (Redelmeier et 

al. 2003), etc. 

The horizontal curve indicator as a road character at upstream or downstream of the 

bridge was found to be statistically significant in the NB model. The marginal effect shows 

that 5.612 is less likely to result in a bridge-related work zone crash. In the study conducted 

by Eftekharzadeh and Khodabakhshi (Eftekharzadeh and Khodabakhshi 2014) and Khoury 

et al. (Khoury et al. 2019), it was shown that drivers tend to reduce their traveling speed 

when driving on a horizontal curve. This may result in having more control over the 

vehicle, thus reducing the number of accidents at locations with horizontal curves.  The 

ABC-SVR variable impact results also show that the presence of a horizontal curve results 

in a 341.69% decrease in the probability of crash occurrence.  

Bridge surface width is the last variable found to have a statistically significant 

impact on crash frequency, indicating that with the increase of surface width, a higher 

number of crashes can be expected. It should be noted that although surface width and 

number of lanes are highly correlated in many cases, they are different in some cases, 

including if the bridges are located at intersections or a ramp exists on the bridge. The 

marginal effect indicates that for a one-unit change in surface width, a crash is more 
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probable to occur by 0.247. A mixed effect was found in the literature that investigated the 

impact of road surface width on crash frequency. For example, it was found in (Qin 2012) 

and (Ma et al. 2008) that surface width contributes to a fewer number of crashes; however, 

a nonlinear relationship was found in (Das and Abdel-Aty 2011).  

The ABC-SVR results demonstrated that the relationship between crash frequency 

and surface width has a quadratic functional form, which is consistent with the findings of 

(Das and Abdel-Aty 2011). It is interesting to observe that bridge crash counts reach a 

maximum when the surface width is approximately 50 ft. A higher or lower value of surface 

width results in a decrease in the number of crashes on bridge locations.  

4.7. Summary and Conclusions 

This chapter investigated the relationship between work zone presence on bridge 

locations and crash occurrence. A detailed descriptive analysis was performed for the total 

work zone crashes in Florida, while statistical and machine learning approaches were 

utilized to model crash frequency at 60 bridge locations in Miami-Dade County.  

According to the results from the descriptive analysis, it was found that the number 

of work zone crashes and worker-involved work zone crashes experienced an 11% and 7% 

increase from 2015 to 2017, respectively. In addition, most of the work zone crashes 

occurred between 7:00 a.m. to 3:00 p.m. 

From a modeling perspective, a comparison between the prediction performance of 

the SVR and NB models showed that SVR predicted bridge crashes more effectively and 

accurately than traditional NB models. An interesting finding of this study was that a 

nonlinear relationship was observed from the ABC-SVR results for the bridge surface 
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width. This cannot be captured through any conventional statistical models like the NB, as 

they are restricted on the linear relationship between crash frequency and explanatory 

variables. This is a fundamental limitation of such statistical models, which makes machine 

learning models a more promising tool for modeling crash frequency.   
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CHAPTER 5 

BENEFIT-COST ANALYSIS OF ABC IMPLEMENTING  

5.1. Introduction 

Roadway safety benefit-cost analysis is a critical component used to enhance traffic 

safety on transportation networks. Work zones are essential components of highway 

renovation, technological upgrading, and maintaining and improving roadway systems. 

This may, however, have negative impacts, such as a decrease in roadway capacity, an 

increase in traffic congestion, and a new set of traffic safety concerns. 

As defined in the Highway Capacity Manual (HCM) (HCM 2010), work zone is a 

segment of highway that impinges on the number of traveling lanes as a result of 

construction, maintenance, or utility work activities. Work zone road user costs (WZ RUC) 

is defined as “the additional costs borne by motorists and the community at-large as a result 

of work zone activity (Mallela and Sadavisam 2011).” Different costs are associated with 

work zone presence, which can be mainly divided into the mobility, safety, and reliability 

categories. There are costs from these categories that have monetized impacts, such as: 

costs associated with travel delay, crash costs, vehicle operational cost (VOC), emission 

costs, and the impacts of nearby projects, each of which need to be taken into account for 

work zone design and implementation plans. 

Bridge construction is defined as long-term stationary work zones that can result in 

either increasing the risk of being in a crash or being in a more severe crash. From the 

perspective of all stake holders, the timely completion of a construction project is of great 

importance. Any inadvertent delays in projects can increase the cost exponentially and 

cause nuisance to the public. A reappraisal of factors which affect the on-site construction 
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time mostly includes the traditional methodologies which causes delays in planning and 

scheduling of projects. Although such methodologies have been successfully implemented 

for infrastructure projects for decades, new techniques have been developed which can 

reduce the construction time. One such methodology is the Accelerated Bridge 

Construction (ABC) which provides a framework for fast delivery of the projects. 

Generally, it uses precast elements of the bridge fabricated on site or away, moved to the 

bridge location and installed in place (Farhangdoust and Mehrabi 2019). Besides the 

expedited construction, the ABC also reduces the labor man-hours which helps improve 

worker safety. From its inception, the confidence in ABC techniques have improved over 

the years as a result of successful implementation and improved performance of ABC built 

bridges. 

The new developments in ABC are a result of extensive experimental and analytical 

studies on the performance of these techniques. The component and full-scale testing of 

various ABC components have revealed emulative performance to field cast construction 

(Sadeghnejad et al. 2019, Farhangdoust and Mehrabi 2020, Sadeghnejad et al. 2020). 

These improvements are mainly attributed to the use of materials, such as UHPC, which 

have superior material and mechanical properties. In many instances, the ABC methods 

exceed the performance metrics as prescribed in the specifications. A number of ABC 

techniques have been used in the construction industry including design of connections, 

development of new structural members and repair of existing bridge components 

(Azizinamini et al. 2019, Rehmat et al. 2019a, b, Farzad et al. 2020). As a result, industry 

professionals and transportation officials are in the process of incorporating ABC codes to 
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their design and construction specification. These codes will encourage industry usage and 

improve confidence level in ABC.  

As an innovative construction method, ABC dramatically decreases on-site 

construction duration, and thus, may also have roadway safety benefits (i.e., can be 

considered a highway safety improvement project) (Mehrabi and Farhangdoust 2019). To 

determine the economic benefits of its safety improvements, crash costs can be utilized to 

quantify the impacts of crashes reduced by ABC implementation. To this end, and within 

the context of this study, the WZ RUC computation process is based on the assessment of 

the monetized components of crash costs resulting from work zone activities at bridge 

locations. This issue will be investigated in this chapter in the following sections.  

5.2. Work Zone Crash Cost 

Crash costs are most often reported by crash severity, which is basically reported 

using injury scales such as KABCO, as explained in the previous section. There are several 

methodologies employed to calculate the unit cost of crashes, which are not limited to, but 

include: crash costs by KABCO, injury scale translators, costs by crash type, estimates for 

cost components, and so forth (Harmon et al. 2018). Although there are differences 

between other approaches and each method provides some pros and cons over the others, 

there is not necessarily a preferred method.  

In the context of work zone safety, the associated crash costs is a function of the 

expected change in crash rate/frequency due to the presence of work zones (Mallela and 

Sadavisam 2011). Considering the data limitations of the current study, in which the 

beginning and ending date/time of work zone activities (i.e., the exact duration of work 
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zone presence) and work zone length were not available, an annual average of a three-year 

crash cost estimation was performed. In addition, since the ABC implementation aims to 

end the work zone activity, this study seeks to evaluate the crash costs (frequency and 

severity) associated work zone presence, regardless of work zone type and durations. The 

estimated costs considered in this study include: 

1) Estimated vehicle damage, including the property and vehicle damages 

recorded in the crash report.    

2) Cost per equivalent KABCO crash severity level using the Florida crash cost 

method based on the 1994 and 2013 USDOT guidance with state-specific 

adaptations.  

According to the Model Minimum Uniform Crash Criteria (MMUCC) (NHTSA 

2011) and Federal Highway Administration’s (FHWA) KABCO Injury Classification 

Scale and Definitions for Florida (FHWA), the KABCO scaled crash injury definitions are 

as follows: 

 Fatal Injury (K): Stands for any injury that results in a death within a 30-day 

period after the crash occurred. 

 Incapacitating Injury (A): Stands for a serious injury other than a fatality, 

such as disabling injuries including broken bones, severed limbs, etc. These 

injuries usually require hospitalization and transport to a medical facility. 

 Non-incapacitating Evident Injury (B): Stands for minor injury and non-

disabling injuries that are evident at the scene of the crash, such as 

lacerations, scrapes, bruises, etc. 
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 Possible Injury (C): Stands for any injury reported or claimed, which is 

not a fatal, incapacitating (serious injury), or non-incapacitating (minor 

injury). 

 No Injury/PDO (O): Stands for a situation in which a person received any 

bodily harm from the motor vehicle crash. 

The abovementioned severity scales will be used in the following section in this 

chapter to convert and estimate the monetary value of different levels of crash severity for 

crash cost analysis.  

5.2.1. Descriptive Statistics of Work Zone Crash Costs 

Work zone–related crash records from the Florida Signal Four Analytics tool (S4A 

2018) database were extracted, as well as the overlaying of the bridge locations information 

from the ArcGIS tool as the input for crash cost estimation. Since the Florida method for 

calculating crash unit cost is based on the KABCO crash severity scale, severity levels 

were converted to KABCO scales (which will be discussed in the following section). The 

detailed statistics of the number of participants in each of the five levels in the KABCO 

scale for work zone crashes occurred in the 60 bridge locations in Miami-Dade County, as 

shown in Figure 5-1.  

 

Figure 5-1 Number of Crash Participants in KABCO Scale  
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In the crash database, the estimated damage is specified as the monetary value of 

damaged properties and vehicles in the crash. The annual distribution of estimated damage 

is shown in Figure 5-2, followed by the estimated damage by work zone type in Figure 5-

3. 

 

 Figure 5-2 Annual Distribution of Estimated Damage  

 

Figure 5-3 Distribution of Estimated Damage by WZ Type 
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As shown in Figure 5-2, estimated vehicle and property damages in 2015 is 130% 

and 75.45% higher than that in 2016 and 2017, respectively. Also, as demonstrated in 

Figure 5-3, lane closure and work on shoulder or median types of work zone stands among 

the most destructive work zone types by 53.52% and 35.06% of the total amount of 

estimated damages. In addition, Figure 5-4 demonstrates that the activity area in work 

zones resulted in higher crash costs. This is quite intuitive since the construction machinery 

is located in the activity area, and thus, may result in higher property damage costs and  

vehicle damages than other locations in the work zone. 

 

Figure 5-4 Distribution of Damage by Location in WZ 
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same conclusion can be drawn for estimated crash cost by weather condition. As shown in 

Figure 5-6, the crash costs associated with clear weather condition are significantly higher 

than the costs associated with cloudy and rainy weather conditions, with 369% and 

959.27%, respectively. 

 

Figure 5-5 Distribution of Damage by Light Cond. 

 

Figure 5-6 Distribution of Damage by Weather Cond. 
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In terms of crash type, since rear-end crashes were the most severe and frequent 

crash type in the general work zone crashes, they also consist of the highest associated 

vehicle and property costs among all crash types in bridge-related crashes (with a share of 

59.02%).   

Crashes involving workers were associated with higher costs than situations where 

no workers were present. As shown in Figure 5-7, worker-involved work zone crashes at 

bridge locations consisted of 65.61% of the total crash costs, which is 90.78% higher than 

the non-worker-involved crashes (34.39% lower).  

 

Figure 5-7 Distribution of Damage by Worker Presence 
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Figure 5-8 Distribution of Damage by LE Presence 
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(Mallela and Sadavisam 2011). These crash unit costs are presented in Table 5-1 (Harmon 

et al. 2018). 

Table 5-1 Florida DOT crash unit costs for BCA (2013 dollars) 

Severity Level Comprehensive Crash Unit Cost 
Fatal Injury (K) $10,100,000 

Incapacitating Injury (A) $818,636 

Non-incapacitating (B) $163,254 

Possible Injury (C) $99,645 

No Injury/PDO (O) $6,500 

 

According to the Bureau of Labor Statistics, Consumer Price Index, the U.S. dollar 

value in 2015, 2016, and 2017 experienced an inflation rate of 1.74%, 3.03%, and 5.22% 

compared to 2013 (BLS 2020). These values then experienced an inflation rate of 8.17%, 

6.83%, and 4.60% compared to 2020. Hence, these conversion rates should be taken into 

account when calculating crash costs.   

Considering the observed annual crash frequency divided by KABCO severity 

levels and corresponding dollar values for 2015, 2016, and 2017 to the present 2020 values, 

the associated unit costs of work zone crashes at bridge locations are calculated and 

summarized in Table 5-2.  

Table 5-2 WZ Comprehensive Crash Unit Cost 

Severity  Frequency Crash Unit Cost Injury Cost  Equivalent $ Value* Total Cost 

2015      

K 0 $10,100,000 0 1.74% 0 

A 1 $818,636 $818,636  1.74% $832,880 

B 27 $163,254 $4,407,858  1.74% $4,484,555 

C 88 $99,645 $8,768,760  1.74% $8,921,336 

O 192 N/A $1,369,660**  N/A $1,369,660 

Total 2015     $15,608,431 

Value equivalent of total in 2015 to 2020 (8.17% inflation rate) $16,883,640 

2016      

K 1 $10,100,000 $10,100,000 3.03% $10,406,030  

A 1 $818,636 $818,636 3.03% $843,441  

B 10 $163,254 $1,632,540 3.03% $1,682,006  

C 53 $99,645 $5,281,185 3.03% $5,441,205  
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Table 5-2 WZ Comprehensive Crash Unit Cost 

O 101 N/A $594,701** N/A $594,701 

Total 2016     $18,967,383 

Value equivalent of total in 2016 to 2020 (6.83% inflation rate) $20,262,855 

2017      

K 2 $10,100,000 $20,200,000  5.22% $21,254,440 

A 0 $818,636 $0  5.22% $0 

B 6 $163,254 $979,524  5.22% $1,030,655 

C 20 $99,645 $1,992,900  5.22% $2,096,929 

O 86 N/A $780,696** N/A $780,696 

Total 2017     $25,162,720 

Value equivalent of total in 2017 to 2020 (4.60% inflation rate) $26,320,205 

Three-Year Total    $63,466,700 

Three-Year Average (present value)   $21,155,567 
*as compared to 2013 

**total estimated damage from crash reports 

5.3. ABC Implementation Costs 

Considering that construction costs such as operation, materials, machinery, labor, 

etc. may differ from location to location, and the crash cost analysis was conducted based 

on Florida crash statistics, an ABC project information implemented in the state of Florida 

was utilized for the ABC cost analysis. The ABC project information was extracted from 

the ABC-UTC website titled ABC Project & Research Databases (ABC-UTC 2020).  

Graves Avenue over the I-4 project was located in the city of Orlando in central 

Florida and was built in 2006. The existing bridge was a two-lane four-span concrete beam 

bridge with a dimension of 215 feet long and 30 feet wide, and was built in 1958. This was 

replaced with a 286-foot long and 59-foot wide bridge with the span length of 143 feet 

through the ABC method to accommodate the widening of the Interstate 4 Highway from 

four lanes to six lanes in 2006. This bridge was constructed through the Self-propelled 

Modular Transporters (SPMT) method to move the bridge spans. The comparison of 
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reduction time and associated costs of the ABC method and conventional method is shown 

in Table 5-3.  

Table 5-3 Comparison of ABC and Conventional Method 

Method Mobility Impact (Lane Closure) Implementation Costs Present $ Value* 

ABC 4 days $28, 168,175 $35,824,285 

Conventional 32 days $27, 600,000 $35,101,680 

Difference 28 days $568,175 $722,605 

*as compared to 2006 (27.18% inflation rate) 

In this study, the value of crash costs (i.e., number of crashes and associated costs) 

that can be saved as a result of shortening the construction duration through the ABC 

implementation process is considered a safety benefit of the ABC method. This value over 

the difference of implementation costs (i.e., the additional costs associated with ABC) 

compared to the conventional construction method will illustrate the safety benefits of 

ABC over its surplus expenses, as shown in Equation (5-1). 

𝑆𝑎𝑓𝑒𝑡𝑦 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 =
 𝑋 ∗ 𝐴𝑛𝑛𝑢𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑟𝑎𝑠ℎ 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑒𝑡ℎ𝑜𝑑 𝑝𝑒𝑟 𝑏𝑟𝑖𝑑𝑔𝑒

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐴𝐵𝐶 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 − 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙  
 

(5-1) 

Where the 𝑋  is the number of days reduced in the work zone duration. Using the 

information provided in Table 5-3, ABC reduced the lane closure period (work zone 

presence) by 28 days (from 32 to 4 nights), and thus, considering that the calculated crash 

costs is for 60 bridge locations and normalizing it into 32 days of lane closure, Equation 

(5-1) can be written as follows:   
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𝑆𝑎𝑓𝑒𝑡𝑦 𝐵𝑒𝑛𝑓𝑖𝑡𝑠 =
28 ∗ (

$21,155,567
60 ∗ 32 )

$722,605
= 0.427 = 42.7%  (5-2) 

It was shown that with the safety benefit of $308,518, which was a result of cutting 

the lane closure duration by 28 nights, the safety benefits of the Florida project consisted 

of 42.7% of the total ABC implementation costs.  

5.4. Summary and Conclusions 

This chapter analyzed the bridge-related work zone crash-associated costs and the 

roadway safety benefits that can be obtained by utilizing ABC compared to conventional 

bridge construction methods.  To achieve this objective, first, the costs associated with 

work-zone crashes at the selected bridge locations in Miami-Dade County were analyzed. 

Then, considering that the selected bridges were constructed through the conventional 

bridge construction methods, an ABC project implemented in Florida was selected.   

Different data sources and manuals such as crash data, police reports, the ABC-UTC 

project and research databases, Highway Capacity Manual (HCM), crash costs for highway 

safety analysis, work zone road user costs, etc. were utilized to conduct the benefit cost 

analysis.   

Results of the benefit cost analysis illustrated that a portion of the roadway safety 

benefits of ABC implementation is equal to almost 43% of its associated costs, which can 

be saved right after bridge insulations. This is a considerable share of ABC-associated 

costs, which can also be higher when the conventional methods take longer and need more 

lane closures. On the other hand, the considered project was installed through the SPMT 

method, so different ABC methods may result in different times of implementation.  
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It should be noted that this chapter focused on the roadway safety benefits of ABC 

compared to the conventional construction method, while there are other transportation 

benefits that may result from cutting work zone duration, such as delay, emission, and user 

costs. Thus, in order to view all of the ABC benefits, each factor needs to be taken into 

account separately. 
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CHAPTER 6 

CONCLUSION 

The first part of this project focused on the impacts of work zone presence on the 

traveling public and construction crews and were investigated in the context of crash 

severity. Second, the impacts of work zone presence on bridge locations were studied, as 

defined by crash frequency. Finally, the costs associated with work zone-related crashes at 

bridge locations were analyzed, and benefits from ABC implementation methods were 

calculated. To this end, different descriptive statistics, statistical modeling approaches, and 

machine learning techniques together with metaheuristic optimization algorithms were 

developed and utilized. The following list illustrates the contributions of this project to the 

body of transportation knowledge: 

 Applying machine learning techniques for work zone crash analysis. 

 Incorporating Artificial Intelligence (AI) for enhancing the prediction performance 

of the developed machine learning models. 

  Performing sensitivity analysis to deal with the black-box nature of the proposed 

machine learning models. 

  In-depth investigation of contributing factors in conjunction with the results from 

statistical and machine learning models to provide a more comprehensive 

interpretation of crash severity/frequency outcomes. 

6.1. Crash Severity at Work Zones 

Work zones are critical locations in roadway networks in which different crash risk 

factors are involved compared to general traffic crashes. Worker safety is one of the main 
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concerns of transportation safety analysts when planning and designing a work zone.  In 

this project, the risk factors associated with work zone crashes involving workers were 

examined through binary level logistic regression and support vector machine 

classification models. Different models for daytime and nighttime crashes were devolved. 

A total of 9,179 and 2,863 crash records for daytime and nighttime work zone 

crashes from 2015 through 2017 were used in both crash severity models. While the 

statistically significant crash severity contributing factors were determined through the 

mixed logit modeling framework, the nonlinear relationship between crash severity 

outcomes by time-of-day were explored by an SVM model trained by the Cuckoo Search 

(CS) metaheuristic optimization algorithm. Likelihood ratio tests were also conducted to 

examine the overall stability of the models’ estimates across time periods. 

Results demonstrated that while there is a significant temporal instability among 

parameter estimates for daytime and nighttime models, driver alcohol involvement, rainy 

weather condition, wet road surface, multi-occupant for vehicle occupancy, and distraction 

are the most significant causes of fatalities/injuries in work zone crashes involving workers 

in both models. For the variables, which are the number of vehicle-involved and law 

enforcement indicators, a mixed effect was found between daytime and nighttime 

conditions. It was also shown that different risk factors were involved in work zone critical 

locations between daytime and nighttime conditions.  

From modeling points of view, when comparing model performance, the CS-SVM 

produced a better prediction performance compared to the SVM and BMXL models. The 

modeling results also shed light on the ability of SI optimization techniques in the SVM 

parameter selection to achieve a higher prediction performance. 
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6.2. Crash Frequency at Work Zones 

Since bridges are specific segments of roadways and share different geometric 

characteristics, the study of crash frequency contributing factors is of importance, not only 

for transportation safety analysis, but also for bride geometric design. To this end, this 

project focused on examining the relationship between work zone presence and crash 

occurrence at bridge locations through a detailed descriptive analysis and by developing 

crash frequency models. 

Using multiple data sources such as crash records, roadway geometric features, and 

traffic data, a crash dataset containing 60 bridge locations and associated work zone crashes 

from 2015 to 2017 was created to develop predictive models. While a detailed descriptive 

analysis was provided to illustrate the percentage distribution of crash frequency based on 

months of year, day of week, time of day, crash type, number of vehicles involved, weather 

condition, location at work zone, work zone type, and so forth, the risk factors were 

examined through the developed predictive models.   

Incorporating 18 explanatory variables make a considerable set of contributing 

factors for bridge related work zone crash frequency analysis, including: work zone related 

features such as percentage of workers involved, percentage of law enforcement, and work 

zone type;  bridge geometric characteristics including bridge length, surface width, median 

type and width, shoulder type and width; roadway characteristics such as road functional 

classification, ramp, intersection, and express lane existence; traffic conditions indicators 

such as AADT and truck AADT.   

The analysis of crash frequency through the NB model revealed that five 

explanatory variables, including paved median with barrier other than guardrail, raised 
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traffic separators, law enforcement, horizontal curve indicator, and bridge surface width, 

had a statistically significant impact on crash frequency at bridge locations. In addition, a 

nonlinear relationship was observed from the ABC-SVR results between the bridge surface 

width and number of crashes. 

From a modeling point of view, it was shown that the developed ABC-SVR model, 

compared to the SVR and NB models, results in significantly better prediction 

performance, and thus, more reliable model inference. 

6.3. ABC Benefit-Cost Analysis 

It has been well documented in the literature that vehicles traveling through 

roadways with work zones have a higher chance of being in an accident. Work zone crash 

cost is another important aspect of work zone safety that needs to be considered in the 

decision-making process. As shown through the detailed descriptive analysis and crash cost 

calculations, bridge-related work zone crashes account for the annual cost of $21,155,567 

from 2015 to 2017. An investigation into the ABC-associated costs from a case study in 

Florida revealed that this consists of almost 43% of the total ABC implementation costs.  

DOTs developed their own decision-making process to assess the viability of ABC 

technologies and determine the effects of ABC on the overall cost of the bridge. Although 

the impact of delay and delay-related user costs were incorporated into the developed ABC 

decision matrices and considered a benefit of ABC over conventional bridge construction 

methods, the impacts of ABC on roadway safety are overlooked. In addition, there is a lack 

of consideration for worker safety when assessing the ABC projects. These benefits can be 

achieved through the modeling and analysis of work zone related crashes through the 
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detailed descriptive and crash analysis. While the descriptive analysis reveals the general 

crash trends, the significant contributing factors that impact the crash frequency and 

severity can be extracted from associated models. Hence, there is an emergent need for a 

comprehensive statewide and in-depth investigation of work zone crash mechanisms to be 

ultimately incorporated into the decision-making process, since it is a significant portion 

of the ABC implementation costs.  

6.4. Study Limitations and Future Works 

Data limitations is a common issue when studying work zone crashes. The work 

zone crash analysis will only  be as accurate as the applied data. There is a lack of work 

zone-specific information in police reports and accordingly in crash data, including 

whether or not the crash occurred at an active work zone, or the type of work zone activity 

such as construction, maintenance, or utility work activities was missing. Moreover, 

construction project profiles were missing in the work zone operation data, such as time 

frames of work zone durations. To avoid potential bias, only the crashes marked as work 

zone related crashes at bridge locations have been included in the crash frequency and cost 

analysis of this project. Hence, we made sure that the considered crashes were certainly 

work zone related ones; however, there may be other crashes that occurred as a result of 

work zone presence, but these were not marked in police reports.  

Future research can focus on providing more detailed work zone related data such 

as work zone activities and duration for pre-work zone and during construction time 

analysis. The study of daytime and nighttime work zone scheduling and their economic 

impacts are recommendations for future research.  
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While the models developed in this research may not be transferable to other 

locations, the practical aspects of the proposed methodology can be applied using local 

work zone crash data from other areas.  

In addition, considering that the work zone impacts can be studied from different 

points of view including safety, mobility, and environmental impacts, multi-criteria 

decision making analysis would be a great addition to this research. This can help decision 

making process and assist stakeholders to consider preference information when making a 

decision on bridge construction strategies.  
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