Synthesis: Rapid Bridge Rehabilitation

QUARTERLY REPORT

October 1, 2015 to December 31, 2015 Period

Submitted by

Brent Phares

Department of Civil, Construction, and Environmental Engineering

Iowa State University

Ames, IA

Submitted to

Atorod Azizinamini

Director, ABC-UTC

April 2015

ABC-UTC
Quarterly Research Progress Report
Title: Synthesis: Rapid Bridge Rehabilitation
April, 2015

1
A. DESCRIPTION OF RESEARCH PROJECT
Accelerated Bridge Construction (ABC) has received significant research attention in recent years. For the most part, these research endeavors have focused on means and methods for decreasing impact to the traveling public during new bridge construction. At the same time, there are great opportunities to reduce traffic impacts by decreasing construction time associated with bridge rehabilitation. Most bridges undergo several small and one or two major rehabilitations during their useful lives and decreasing the traffic impacts during these events could have significant benefits. Fortunately, many of the new construction concepts may be able to be adapted for use in rehabilitation scenarios. In still other cases, new means and methods may be needed. This research will complete a synthesis of available rehabilitation alternatives and solutions that could be used by practitioners to complete rapid rehabilitation projects. In some cases these alternatives will be adaptations of new construction methods and in others they will be strictly for rehabilitation activities. This document will provide a comprehensive summary of available solutions. Where appropriate, design and construction procedures will be provided.

A.1. PROBLEM STATEMENT
B. Accelerated Bridge Construction (ABC) has received significant research attention in recent years. For the most part, these research endeavors have focused on means and methods for decreasing impact to the traveling public during new bridge construction. At the same time, there are great opportunities to reduce traffic impacts by decreasing construction time associated with bridge rehabilitation. Most bridges undergo several small and one or two major rehabilitations during their useful lives and decreasing the traffic impacts during these events could have significant benefits. Fortunately, many of the new construction concepts may be able to be adapted for use in rehabilitation scenarios. In still other cases, new means and
methods may be needed. This research will complete a synthesis of available rehabilitation alternatives and solutions that could be used by practitioners to complete rapid rehabilitation projects. In some cases these alternatives will be adaptations of new construction methods and in others they will be strictly for rehabilitation activities. This document will provide a comprehensive summary of available solutions. Where appropriate, design and construction procedures will be provided.

B.1. CONTRIBUTION TO EXPANDING USE OF ABC IN PRACTICE
C. There exists a great opportunity to expand the growing ABC knowledgebase to activities and needs beyond new construction. In this manner, research dollars already expended will derive even more benefits by find wider applicability.

C.1. RESEARCH APPROACH AND METHODS
D. To accomplish this work a comprehensive synthesis will be performed. This compilation of innovative methods will include examples of projects completed across the country. To garner even more value from this synthesis the work will include information on extending ABC to bridge widening. In the event that deficiencies are noted in particular areas, recommendations for additional needed research will be made.

D.1. DESCRIPTION OF TASKS TO BE COMPLETED IN RESEARCH PROJECT
E. The conduct of this synthesis will be conducted following the general procedures utilized by the National Cooperative Research Program. Specifically, the research team will collect information (Task 1), synthesize it (Task 2), and prepare a written report (Task 3).
Tasks 1 and 2 have been completed. To complete Task 1 information related to the project were collected. This included using search engines available online and at the Iowa State University Parks Library. These pieces of information were documented by creating a working list of identified resources, topical information contained within each one, authorship, date, etc. The identified resources were then categorized by the topical information contained within each one. Following the collection of available information, the information was synthesized as part of Task 2. To accomplish Task 2 each piece of literature was first read from beginning to end to gain an understanding of the information contained within. Then each piece of literature was reviewed once again such that the important pieces of information could be extracted. These important points were logged and added to a complete listing of findings. Then, each piece of literature was summarized completely making sure to track the important points while also ensuring that the broad scope was well represented. A draft of the project front matter is included below. This draft front matter gives a good representation of the types of information that has been identified and synthesized. Additionally, a list of cited works is given below.

In short, the results of the synthesis revealed that there has been very little research/development of technologies/techniques that are specifically targeted towards rapid bridge rehabilitation. This is likely an area where additional research efforts could be made. Fortunately, it does appear that there are numerous ABC technologies used for new construction that could be used in rapid repair and/or rehabilitation. As is probably not too surprising, the majority of information that could be adapted from new construction relates to decks. Further, the information related to decks ranges from rapid protection all the way to rapid full replacement.
Information on rehabilitation of superstructures is available but very limited. And, information pertaining to substructures is even more limited. It is felt that the greatest opportunity for developmental work would be in the area of developing rapid means of widening existing superstructures and substructures. These technologies would be more about how to facilitate widening/etc. without disrupting traffic on the existing portion of the structure.

This project is complete and the final report can be found here:

http://www.intrans.iastate.edu/research/projects/detail/?projectID=-446980958
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 1. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>2.1 Rapid Removal</td>
<td></td>
</tr>
<tr>
<td>2.2 Rapid Repair</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Expansion Joints</td>
<td></td>
</tr>
<tr>
<td>2.2.2 Deck Closure Pours</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 2. DECK JOINTS</td>
<td></td>
</tr>
<tr>
<td>2.1 Rapid Removal</td>
<td></td>
</tr>
<tr>
<td>2.2 Rapid Repair</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Expansion Joints</td>
<td></td>
</tr>
<tr>
<td>2.2.2 Deck Closure Pours</td>
<td></td>
</tr>
<tr>
<td>2.2.3 Deck Closure Pours</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 3. DECKS</td>
<td></td>
</tr>
<tr>
<td>3.1 Rapid Removal</td>
<td></td>
</tr>
<tr>
<td>3.1.1 Hydromilling</td>
<td></td>
</tr>
<tr>
<td>3.1.2 Milling</td>
<td></td>
</tr>
<tr>
<td>3.1.3 Sawing</td>
<td></td>
</tr>
<tr>
<td>3.1.4 Crushing</td>
<td></td>
</tr>
<tr>
<td>3.1.5 Peeling</td>
<td></td>
</tr>
<tr>
<td>3.2 Rapid Protection</td>
<td></td>
</tr>
<tr>
<td>3.2.1 Bituminous Concrete Overlays</td>
<td></td>
</tr>
<tr>
<td>3.2.2 Polymer Overlays</td>
<td></td>
</tr>
<tr>
<td>3.2.3 High Early Strength Hydraulic Cement Concrete Overlays</td>
<td></td>
</tr>
<tr>
<td>3.2.4 Penetrating Sealers</td>
<td></td>
</tr>
<tr>
<td>3.3 Rapid Repair</td>
<td></td>
</tr>
<tr>
<td>3.3.1 Asphalt Concrete Patching</td>
<td></td>
</tr>
<tr>
<td>3.3.2 Polymer Concrete Patching</td>
<td></td>
</tr>
<tr>
<td>3.3.3 High Early Strength Hydraulic Cement Concrete Patching</td>
<td></td>
</tr>
<tr>
<td>3.3.4 Crack Repair and Sealing</td>
<td></td>
</tr>
<tr>
<td>3.4 Rapid Replacement</td>
<td></td>
</tr>
<tr>
<td>3.4.1 Cast-in-Place (CIP) High Early Strength Concrete</td>
<td></td>
</tr>
<tr>
<td>3.4.2 Precast Concrete Deck Panels</td>
<td></td>
</tr>
<tr>
<td>3.4.3 Exodermic Deck Panels</td>
<td></td>
</tr>
<tr>
<td>3.4.4 Open Steel Grids</td>
<td></td>
</tr>
<tr>
<td>3.4.5 Orthotropic Deck Panels</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 4. GIRDERS</td>
<td></td>
</tr>
<tr>
<td>4.1 Rapid Repair</td>
<td></td>
</tr>
<tr>
<td>4.2 Rapid Replacement</td>
<td></td>
</tr>
<tr>
<td>4.2.1 Inverset Panels</td>
<td></td>
</tr>
</tbody>
</table>
4.2.2 Precast Modified Beam-in-Slab Bridge (PMBISB) System .. Error! Bookmark not defined.
4.2.3 Adjacent Box and Tee Beams .. Error! Bookmark not defined.
4.2.4 Fenrich Concrete Girder ... Error! Bookmark not defined.

CHAPTER 5. PIERS AND COLUMNS .. Error! Bookmark not defined.

5.1 Rapid Repair .. Error! Bookmark not defined.
5.2 Rapid Replacement ... Error! Bookmark not defined.

CHAPTER 6. ABUTMENTS .. Error! Bookmark not defined.

6.1 Rapid Repair .. Error! Bookmark not defined.
6.2 Rapid Replacement ... Error! Bookmark not defined.

6.2.1 Geosynthetic Reinforced Soil ... Error! Bookmark not defined.

CHAPTER 7. SUMMARY AND CONCLUDING REMARKS .. Error! Bookmark not defined.

REFERENCES ... 9

LIST OF FIGURES

Figure 1. Hydrodemolition Machine (Phares et al., 2014) ... Error! Bookmark not defined.
Figure 2. Removal area using hydrodemolition (Phares et al., 2014) .. Error! Bookmark not defined.
Figure 3. Polymer Overlay Application (Iowa State University Bridge Engineering Center) Error! Bookmark not defined.
Figure 4. Typical Precast Concrete Deck Panels (recreated from Oliver and Ramey 1998) Error! Bookmark not defined.
Figure 5. Detail of a Partial-Depth Precast Panel Connection to Steel Girder (Recreated from Tadros, Baishya 1998) ... Error! Bookmark not defined.
Figure 6. Detail of a Partial-Depth Precast Panel Connection to Concrete Girder (Recreated from Tadros, Baishya 1998) ... Error! Bookmark not defined.
Figure 7. Cross-Section of the NU Continuous Precast Prestressed Panel (recreated from Oliver and Ramey 1998) ... Error! Bookmark not defined.
Figure 8. Plan View of the NU Continuous Precast Prestressed System (recreated from Oliver and Ramey 1998) ... Error! Bookmark not defined.
Figure 9. NU Continuous Precast Prestressed Panel Transverse Joint Details (Oliver and Ramey 1998) ... Error! Bookmark not defined.
Figure 10. NU Continuous Precast Prestressed Panel Reinforced Pocket Detail (recreated from Oliver and Ramey 1998) ... Error! Bookmark not defined.
Figure 11. NU Continuous Precast Prestressed Panel Leveling Device (recreated from Oliver and Ramey 1998) ... Error! Bookmark not defined.
Figure 12. NU Continuous Precast Prestressed Panel Leveling Device (Oliver and Ramey 1998) Error! Bookmark not defined.
Figure 13. Typical Shear Connector Detail (Recreated From Osegueda, Noel 1988). Error! Bookmark not defined.
Figure 14. Typical Keyway (Recreated From Osegueda, Noel 1988). Error! Bookmark not defined.
Figure 15. University of Nebraska Precast Prestressed Full-Depth Concrete Panel System (recreated from Tadros, Baishya 1998) ... Error! Bookmark not defined.
Figure 16. Typical Transverse Cross-Section of NU Full-Depth Panel (recreated from Tadros, Baishya 1998) .. Error! Bookmark not defined.
Figure 17. Typical Steel Arrangement in NU Full-Depth Panel (recreated from Tadros, Baishya 1998) .. Error! Bookmark not defined.
Figure 18. Transverse Shear Key Detail for NU Full-Depth Concrete Panel (recreated from Tadros, Baishya 1998) .. Error! Bookmark not defined.
Figure 19. Connection detail between girder and waffle deck (Aaleti et al., 2014) Error! Bookmark not defined.
Figure 20. Connection detail between center girder and waffle deck (Aaleti et al., 2014) Error! Bookmark not defined.
Figure 21. Connection detail between deck panels (Aaleti et al., 2014)...... Error! Bookmark not defined.
Figure 22. Orthotropic Steel Deck Panel (recreated from Federal Highway Administration)......... Error! Bookmark not defined.
Figure 23. Precast Modified Beam-in-Slab Bridge System Section View (Recreated from Wineland, 2009) .. Error! Bookmark not defined.
Figure 24. Side View of Panel-to-Panel Connection for PMBISB System (recreated from Wineland, 2009) .. Error! Bookmark not defined.
Figure 25. Top View of Panel-to-Panel Connection for PMBISB System (recreated from Wineland, 2009) .. Error! Bookmark not defined.
Figure 26. Adjacent box beam (recreated from Federal Highway Administration) Error! Bookmark not defined.
Figure 27. Adjacent Tee Beam (recreated from Federal Highway Administration).... Error! Bookmark not defined.
Figure 28. Cross-Section of a Single Fenrich Concrete Girder (recreated from Khattak & Cheng 2004) .. Error! Bookmark not defined.
Figure 29. Cross-Section of Series of FC Girders (recreated from Khattak & Cheng 2004) Error! Bookmark not defined.

LIST OF TABLES

Table 1. Rapid Deck Protection Time Requirements (recreated from Sprinkel, Sellars 1990) Error! Bookmark not defined.
Table 2. Rapid Deck Protection Service Life and Initial Cost (recreated from Sprinkel, Sellars 1990) .. Error! Bookmark not defined.
Table 3. Rapid Deck Patching Time Requirements (recreated from Sprinkel, Sellars 1990)........ Error! Bookmark not defined.
Table 4. Rapid Deck Patching Average Service Life and Average Initial Cost (recreated from Sprinkel, Sellars 1990) ... Error! Bookmark not defined.
Table 5. Route B Options (Heckman, 2014) ... Error! Bookmark not defined.
REFERENCES

with orthotropic steel deck panels. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (iabse), 18, 4, 381-389.

Rapid bridge deck replacement: A field demonstration and load test. College Station, Tex: Texas Transportation Institute, Texas A & M University.

42. URS Corporation. (2003). *Lessons learned after PS & E: Bridge county road over I-80 (1.9 miles east of Wanship).* Salt Lake City, UT: UDOT.

E.1. EXPECTED RESULTS AND SPECIFIC DELIVERABLES

F. The expected result is a comprehensive document that can be used by practitioners to identify alternatives/solutions for bridge rehabilitation. This useful document will describe the alternatives and provide design and construction information when appropriate and available.

A.6 Other Comments, Challenges, Modifications, etc

None