Project Information

- I-93 Just north of “Big Dig”
- 180,000+ ADT
- Bridges Built in late 1950’s
- Decks were shot
- 14 Bridges
 - Pairs of two
 - 7 Northbound, 7 Southbound
 - Most were 3 span
 - Simple spans with joints
 - All are steel stringer bridges
 - Needed repairs and painting due to leaking deck joints

July 2010

- Deck Patching Project underway
- Condition worse than anticipated
- CME brought in to investigate deck replacement using ABC
 - Goals
 - Replace 14 bridge decks
 - Weekend only construction
 - Construction in 2012 (Design Bid Build)
- Initial work
 - Changed to superstructure replacement quickly
 - Condition of beam ends
 - Allowed for modular construction without the need to connect the decks to the beams during the weekend (time consuming task)
Why Use ABC?

• Stage Construction options
Why Use ABC?

- 5 Stages required
- 4-5 years of construction
- Potential Work Zone was not desirable
 - Island work zones
- Traffic impacts were significant
- User Costs were very high
- Decision to use ABC was a “no brainer”

July 2010

- Options investigated
 - Modular Deck/Beam Elements
 - New steel with precast decks
 - NEXT Beams
 - SPMT/Lateral Slides
 - Traffic Management Options
 - Staged
 - Build portions of the bridge on each weekend
 - Narrow joints between old and new
 - 3 lane option
 - 4 lane option
 - Full closure of one bound on weekends
 - Span by span
 - Entire bridge

August 4, 2010 - Then came the Hole

- Large punch through on the Fellsway Bridge
 - Major traffic jam
- Entire project changed
 - Construction moved up to 2011
 - Contracting method changed to Design Build
 - Commitment to build 14 bridges in 10 weekends
 - This was chosen based on the preliminary studies
Project Approach

- Replace entire superstructures
- Accelerate construction to minimize mobility impacts to I-93 Traffic
- Limit work to weekends and nights
- Keep 8 lanes open during the weekday rush hours

Project Commitments

Accelerated Project Delivery – Design Build
- Concept Development & Preliminary Design: 2 Months
- Team Selection: 3 months
- Notice to Proceed: February, 2011
- Fabrication: 4 months (500 beams)
- Rehabilitate all bridges during the summer of 2011
- Replace 14 bridge superstructures in 10 weekends
- No disruption to weekday rush-hour traffic
- Manage weekend traffic
 - Minimize use of I-93
 - Reduce weekend volume
 - Investigate long-haul detours for through traffic

Results of Alternate Analysis

- The modular prefabricated beam unit system was chosen
- The weight of units was critical
 - Substructure capacities
 - Weights are the same as existing structure
 - Crane pick limitations
 - Controlled the entire project
- Prefabricated steel beam units offer the best potential for success
 - Very adaptable for different geometries
 - Skew
 - Vertical curves
 - Cross slopes
 - Sections can be made shallow to accommodate vertical clearances
Traffic Management

- Close entire bound during weekends
 - 55 Hour closure
 - Give entire other bound over to the contractor (6+ miles)
- Production:
 - Two bridges per weekend
- Cross overs were constructed at each end of the project limits
- Weekend ADT
 - Less, but far from ideal
 - Multi-level detours used
 - Public outreach used to reduce volume

Anticipated Construction Methods

- Cranes above and below

- Cranes Above Only
Anticipated Construction Methods

Cranes assembly areas

Monday Morning: 8 Lanes open to traffic

Preliminary Substructure Analysis

- Goal: To re-use substructures with rehabilitation
- Service Life
 - By eliminating joints, source of potential deterioration would be limited
 - Sealer coating added for additional protection
 - Additional rehabilitation or even replacement could be done in the future
- Strength
 - One beam was added in the cross section (even number)
 - This shifted the load locations
 - LRFD (HL-93) did cause some issues: Truck + Lane load?
 - LFD (HS-25) was acceptable
 - Decision made to accept LFD rating
Deck Connections

Options
- Narrow Closure pour with straight bars and UHPC
- Medium width closure pour with hooked bars and grout
- Wider pour with lapped bars and High Early Strength Concrete
- Last 2 were both allowed

Wide pour was preferred
- Reduced precast deck width:
 - Shipping width and weight
 - Crane pick weight
- Ease of installation
 - Easier to install with extended bars
 - Interfering bars will spring into place

More room for adjustment = Less Risk to the Contractor

Continuity?

Simple for DL Cont. for LL
- Jointless deck
- Requires a bottom flange connection (closure pour or bolted splice)
- Concerns about forming time and alignment (fit-up)
- Concerns about live load tension across the joint (leakage)

Link Slab Design

- Another option
- Jointless, not continuous
 - Less complicated
- Used to accommodate the end rotations in the beams
Link Slab Design

- Theory
 - Based on research

\[
M = 2EI \theta / L
\]

\(\theta \) = Girder end rotation
\(L \) = debond length
\(E \) = modulus of elasticity of link slab
\(I \) = Gross moment of inertia of slab

Jointless Deck Technology

- Cost effectiveness?
 - Easier forming
 - Less Expensive
 - More structural steel
 - Less Longitudinal Deck reinforcement than continuous girder designs
 - See article in September 2014 issue of Modern Steel Construction

Concrete Closure Pours

Options
- Narrow Closure pour with straight bars - UHPC
- Medium width closure pour with hooked bars
- Wider pour with lapped bars and High Early Strength Concrete
Design of Closure Pour

- **Speed of Construction**
 - UHPC: 3 days to reach final strength
 - Grout: 12 to 48 hours
 - Concrete: 7 days
 - High early strength concrete: 6 to 18 hours
 - Depending on the mix design

Design of Closure Pours

To achieve High Early Strength Concrete, Use one or more of the following:

- Type III High Early Strength Cement
- Pre-blended cements with accelerating admixtures, including silica fume
- Special cements
- High cement/cementitious content (over 600 lb./cy)
- Reduced water/cement Ratio (less than 0.36 by weight)
- Heated fresh concrete to temperatures up to 158 degrees Fahrenheit
- Higher curing temperature
- Chemical admixtures
- Silica Fume
- Insulation to retain heat of hydration
- Use a performance specification for bidding

Design of Closure Pours

Issues with High Early Strength Concrete

- Shrinkage Control
 - Use larger aggregate if possible
 - Curing:
 - Have tensile strength gain outpace internal shrinkage tension stress
 - Use shrinkage reducing admixtures
- Curing
 - Use liquid curing compounds and wet burlap if possible
 - Research on lightweight sand
 - Porous sand retains water during hydration process
 - Cures internally
Design of Closure Pours

Other ways to reduce construction time

• Design connection for lower interim strength

<table>
<thead>
<tr>
<th>Original Design (below)</th>
<th>10 ksi</th>
<th>5 ksi</th>
<th>3 ksi</th>
<th>0 ksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Design (top)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Use higher strength concrete

- 10 ksi mix
- 5 ksi mix

Closure Pour Concrete

- Fast 14 Project Specification
 - Performance based specification
 - High early strength (2000 psi before bridge opening)
 - 4000 psi final strength
 - Low shrinkage
 - Confined shrinkage testing required
 - AASHTO T334
 - Confined shrinkage test panel will be required
 - 10’x14’ with 10’x32” hole
 - Trial batch to be submitted within 15 days of NTP
 - Test pour more than 90 days before first placement
Preliminary Design Calculations

- **Superstructure design was the same as conventional**
 - Simple Span Design, standard parapets
- **Link Slab Design**
 - Based on Research completed in North Carolina
 - PCI Journal Paper
- **Bearings**
 - Standard AASHTO Design
 - Round Bearings used
 - Not bonded to beam or substructure (Mass DOT Standard)

Significant Challenges

- **Timeline for design development**
 - Emergency Project
 - Concept formulated in 2 weeks
 - 30% Plans in 2 months
- **Condition of existing decks**
 - Placed limitations on construction options
- **Traffic Management**
 - Both local and regional

Cost – ABC vs. Conventional

- **ABC cost is a function of…**
 - Speed
 - Complexity
 - Risk
- **The 93 Fast 14 project had elements of all three**
 - It was understood that it would be more expensive than conventional construction
 - Conventional construction in the greater Boston area is also expensive
 - Cost of staged construction is significant
 - 5 stages of construction would be pricey
 - Actual cost was approximately 15% to 25% more than conventional
 - Easily offset by road user costs and reduction in MassDOT Construction engineering staff costs
Role of Designer in Construction

- Design Build projects will generate a lot of paperwork and submissions
- Design calculations and drawings
- Quality Management Plans
- Shop Drawings
- CME was kept on to assist with:
 - Outreach to DB Teams during procurement — Info meetings
 - Review of submissions
 - Attendance at "over the shoulder" review meetings
 - Attendance at weekly project status meetings
 - On site assistance for troubleshooting
 - On-site decision making with Mass DOT staff

What worked well?

1. Teamwork
 - Preliminary Design team worked hand-in-hand with all MassDOT Units
 - Construction staff were involved from DAY ONE
 - Bridge Design and Traffic Management Design were done in parallel
 - Significant outreach efforts with potential DB Teams and local municipalities
 - DB Team/MassDOT Coordination during Construction
2. Modular Element Concepts
 - Flexible and Adaptable

Recommendations

3 Recommendations for other DOT’s planning a similar project

1. Establish a design team up front
 - Department staff
 - Consultants
 - Get construction staff involved from the beginning
2. Consider CMGC
 - Get a contractor on board ASAP
 - Use contractor input during design development
3. Engage contractors, consultants and the public