A Planning Phase Decision Tool for Accelerated Bridge Construction

Pool Funded Study, TPF 5(221)

Project Mgr Lead - Benjamin Tang, P.E. ODOT
PI - Toni Doolen, Ph.D, PI, OSU
Presentation Outline

- Pool funded study sponsoring State DOTs
- Goals and objectives of this study
- Criteria commonly used in project decisions
- Criteria definitions
- AHP for multi-level and multi-criteria
- Project Case Studies
- Summary and Q & A
FHWA-sponsored pool funded study, TPF 5(221), Technical Advisory Committee

<table>
<thead>
<tr>
<th>State</th>
<th>Members and Titles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon</td>
<td>Benjamin Tang, P.E., Bridge Preservation Manager</td>
</tr>
<tr>
<td></td>
<td>Steve Soltesz, Research Coordinator</td>
</tr>
<tr>
<td></td>
<td>Dawn Mach, Bridge Finance Analyst</td>
</tr>
<tr>
<td></td>
<td>Holly Winston, Senior Local Bridge Standards Engineer</td>
</tr>
<tr>
<td>FHWA</td>
<td>Mary F. Huie, Highways for LIFE, Program Coordinator</td>
</tr>
<tr>
<td></td>
<td>Tim Rogers, P.E., Division Bridge Engineer</td>
</tr>
<tr>
<td></td>
<td>Nat Coley, Asset Manager</td>
</tr>
<tr>
<td>California</td>
<td>Paul Chung, Senior Bridge Engineer</td>
</tr>
<tr>
<td>Iowa</td>
<td>Ahmad Abu-Hawash, Chief Structural Engineer</td>
</tr>
<tr>
<td>Minnesota</td>
<td>Kevin Western, Bridge Design Engineer</td>
</tr>
<tr>
<td>Montana</td>
<td>David Johnson, Bridge design Engineer</td>
</tr>
<tr>
<td>Texas</td>
<td>Courtney Holle, Transportation Engineer</td>
</tr>
<tr>
<td>Utah</td>
<td>Daniel Hsiao, P.E., S.E., Senior Project Manager</td>
</tr>
<tr>
<td>Washington</td>
<td>Bijan Khaleghi, Design Engineer</td>
</tr>
<tr>
<td></td>
<td>DeWayne Wilson, Bridge Management Engineer</td>
</tr>
</tbody>
</table>
Develop a decision tool:

- To help analyze different alternatives with multi-level criteria
- To determine which construction method for a specific bridge project is preferred
- To compare conventional and accelerated construction methods
Project Goals and Target Users

Goals of Project

• Bring ABC to ordinary (bread and butter) bridges
• Create a tool that can communicate decision rationale
• Assists users in making ABC a standard practice

Target User Population

• Project managers
• Project Engineers and designers
• Project owners
• Program planners
Defining Criteria (Example)

Indirect Costs

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Sub-Criteria</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Delay</td>
<td>Indirect Costs</td>
<td>This factor captures costs of user delay at a project site due to reduced speeds and/or off-site detour routes.</td>
</tr>
<tr>
<td>Freight Mobility</td>
<td>Indirect Costs</td>
<td>This factor captures costs of freight delay at a project site due to reduced speeds and/or off-site detour routes.</td>
</tr>
<tr>
<td>Revenue Loss</td>
<td>Indirect Costs</td>
<td>This factor captures lost revenues due to limited access to local business resulting from limited or more difficult access stemming from the construction activity.</td>
</tr>
<tr>
<td>Livability During</td>
<td>Indirect Costs</td>
<td>This factor captures the impact to the communities resulting from construction activities. Examples include noise, air quality, and limited access.</td>
</tr>
<tr>
<td>Construction</td>
<td>Indirect Costs</td>
<td>This factor captures the safety risks associated with user exposure to the construction zone.</td>
</tr>
<tr>
<td>Personnel Exposure</td>
<td>Indirect Costs</td>
<td>This factor captures the safety risks associated with worker exposure to construction zone.</td>
</tr>
</tbody>
</table>
Approach to Multi-Criteria Decision-Making

- AHP (Analytic Hierarchy Process) is a decision-making technique designed to select the best alternative from a set of alternatives evaluated against several criteria.
- The decision maker performs pair-wise comparisons that are used to develop an overall priority ranking for each alternative.
Analytic Hierarchy Process (AHP)

Developed by Prof. Thomas Saaty, Wharton School of Business (McGraw-Hill, NY, 1980)

1. Develop Decision Hierarchy
2. Construct Comparison Matrices (linear algebra)
3. Calculate Eigenvector and Eigen values
4. Check Consistency of Matrices
5. Evaluate and Compare Alternatives for Criteria and Decision making
6. Conduct a sensitivity analysis of the model
Software Demo
Comparing any two alternates

- Working across the tabs from left to right
- Changing/removing default criteria
- Setting label for alternates
- Entering values in pair-wise comparisons
- Processing input or calculating utility values
- Reporting on the results
- Saving your project entries
ABC AHP Software

- Default criteria and sub-criteria developed by sponsoring state members
- ABC AHP developed by Oregon State University under TPF 5(221)
- Microsoft Studio Visual .NET 4.0 or later
- Supports Windows (i.e. MS XP, Vista, 7)
- Software interface – tabular design
- User can add/change any criteria
AHP Analysis Details

- The hierarchy organizes the decision-making process
- The factors affecting the decision, i.e. criteria and sub-criteria, progress in gradual steps from general, in the upper levels of the hierarchy, to the particular, in the lower levels of the hierarchy
AHP Analysis Details – cont.

- A decision maker can insert or eliminate levels and elements as necessary to sharpen the focus on one or more parts of the analysis. Less important criteria and sub-criteria can be dropped from further consideration.
AHP Analysis Details - cont.

- Comparisons between criteria and between sub-criteria are performed using data from actual measurements or using a qualitative scale.
AHP Analysis Details - cont.

- Comparisons of which one alternative satisfies a criteria (e.g. direct and indirect costs) over another alternative.

Direct Costs

- **Alt A:** 9, 8, 7, 6, 5, 4, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9
- **Alt B:** 9, 8, 7, 6, 5, 4, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9

Indirect Costs

- **Alt A:** 9, 8, 7, 6, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9
- **Alt B:** 9, 8, 7, 6, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9
Case Studies

• Copano Bay, TX
• Sabula, IA
• Others
Copano Bay, Fulton/Lamar, TX
Copano Bay Bridge, TX

- Carries SR 35-Gulf Intracoastal Waterway
- 11,010 ft long, 129 ft wide, 75 ft tall
- 100, 120 and 150 PS, PC girders
- Approaches - CIP bent caps on trestle piles
- Main navigational structure - CIP pile caps, tall columns and bent caps
- Oyster bays and migratory birds
- High tourist traffic/bird watchers
ABC versus Conventional

- ABC Alternate: use of precast bent caps
- Conventional: cast-in-place bent caps

Alternative Utility - ABC: 0.720 and Conventional: 0.280

Criteria Utility Contributions

Direct Costs:
ABC: 8.9% Conv.: 3.5%

Indirect Costs:
ABC: 4% Conv.: 1.6%

Schedule Constraints:
ABC: 27.7% Conv.: 10.7%

Site Constraints:
ABC: 27.8% Conv.: 10.8%

Customer Service:
ABC: 3.6% Conv.: 1.4%

\[\Sigma: 72\% \quad 28\% \]
Copano Bay – ABC preference
AHP- Synthesized Criteria weights

Main Criteria contributions
- Schedule Constraints: 38.8%
- Indirect Costs: 6.7%
- Direct Costs: 12.3%
- Site Constraints: 37.8%
- Customer Service: 4.4%
Schedule Constraints 38.8%

ABC top most favorable sub-criteria:
- Marine and wildlife
Indirect Costs – 6.7%

ABC top 3 favorable criteria:
- Construction Personnel Exposure
- Revenue loss
- Livability during Construction
Direct costs – 12.3%

ABC top 3 favorable sub-criteria:
• ROW
• Inspection Maintenance and Preservation
• Design and Construct Detours
Site Constraints 37.8%

ABC top 3 favorable criteria:
- Horizontal/Vertical Obstructions
- Environment
- Bridge span configurations
Customer Service 4.4%

ABC top most favorable criteria:
• Public relations
Sabula Project, IA

Alternate A: Same Alignment with Detour (ABC)
Alt. B: Shifted Alignment (Conv.)

Steel Truss Bridge
342-ft Long X 20-ft
SD and FO – narrow, heavy corrosion, scour hole 50’ downstream, vehicle collision impact on portals
Sabula: ABC versus Conventional

• ABC Alternate: same alignment with detour
• Conventional: shifted alignment

Alternative Utility - ABC: 0.728 and Conventional: 0.272

Criteria Utility Contributions

Direct Costs:
ABC: 8.6% Conv.: 3.2%

Indirect Costs:
ABC: 34.5% Conv.: 13%

Schedule Constraints:
ABC: 6.8% Conv.: 2.5%

Site Constraints:
ABC: 15.3% Conv.: 5.7%

Customer Service:
ABC: 7.6% Conv.: 2.8%

Σ: 72.8% 27.2%
Sabula, IA – ABC preference
AHP- Synthesized Criteria weights

Main Criteria contributions
- Schedule Constraints: 9.3%
- Indirect Costs: 47.5%
- Direct Costs: 11.8%
- Site Constraints: 21%
- Customer Service: 10.4%
Sabula: Indirect Costs 47.4%
Sabula: Site Constraints
A list of other projects used

• Elk Creek Bridge, OR
• Grand Mound Project, WA
• I-405 Temple Ave, Long Beach, CA
• Keg Creek Bridge, IA
• Millport Slough Bridge, OR
• Pistol River (2)
• Rte 710 Bridge Widening, CA
• SR 16 EB Nalley Valley I/C, WA
Summary

- The AHP Decision making - effective technique to select the best option from a given set of alternatives evaluated against several criteria and sub-criteria
- Breaks down a multi-dimensional decision matrix into a pair-wise comparison
- Provides an apparent decision process and quantifiable values contributed by each criteria
- Vision: states will adopt as standard use, NHI-training support, technical support...
- Will turn over project to FHWA next month.
Questions?

- Benjamin.m.tang@odot.state.or.us
- (503) 986-3324