TIGHT CONSTRUCTION WINDOWS FOR BNSF RAILWAY BRIDGE 24.8 REPLACEMENT IN CAMAS, WASHINGTON

Alan Bloomquist, BNSF
Jay Hyland, TranSystems

November 13, 2018
HISTORY OF RAILROAD CONSTRUCTION

- Rapid Early Construction due to incentives and rules around land grants
- Generally built in wilderness areas with no permitting concerns
- Only way to deliver material was on newly built track
HISTORY OF RAILROAD CONSTRUCTION
HISTORY OF RAILROAD CONSTRUCTION

- Linear On-Track equipment
- Utilized local material to build timber spans
- Steel shipped out from eastern plants
- Field engineering and decisions made on the fly to build substructure
- Use of Standards due to lag in communication
HISTORY OF RAILROAD CONSTRUCTION

BNSF Bridge 24.8
RIGHT-OF-WAY (ROW) IMPACTS
RIGHT-OF-WAY (ROW) IMPACTS

- Limited ROW
 - Usually not more than 100’ wide
- Limited Staging Areas
- Limited ability to “shoo-fly”
- Utilize on-track equipment if possible
- Permitting benefits
 - Can pre-empt state/local permits
BUSINESS IMPACTS

- Trains = Revenue
- Track time is priority
- Work must be completed within dedicated windows
 - ~6 hrs for a small bridge (spans less than 35’)
 - ~12 hrs for a long bridge of shorter spans
 - ~24 hrs for a large bridge (long steel spans)
 - ~48 hrs if you want to be laughed at
METHODS - DESIGN

- **Standard Design**
 - Developed standard plans that allow modular type construction
 - Utilize similar details as much as possible
 - Design around “traffic impact” as primary concern
 - Details must incorporate existing bridge layout limitations

- **Non-Standard Design**
Construction methods that limit track time are valuable

- Sliding or rolling
- Setting pieces with single crane picks

On-Track equipment

- Cranes on rail
- Material delivered by car

Construction foundations

- Through and around existing bridge structure
- Impact pile driving over vibratory
BRIDGE HISTORY

- Built by the SP&S Railway in 1911
- Designed by Modjeski as a Standard
- New construction from Portland to Spokane
PROJECT OVERVIEW

- **Span Arrangement**
 - Two 50’ Deck Plate Girder Spans
 - Two 200’ Through Truss Spans
 - Pin Connected

- **40 Trains Per Day**
 - Passenger and Freight

- **Cast-in-Place Concrete Piers and Abutments**

BNSF Bridge 24.8
100+ Yr. Old Pin Connected Trusses
In-Line Replacement
Planned for Two 32 Hour Track Windows
No Reuse of Existing Substructure
New Substructure Spaced Around Existing
New Single Track Bridge 545’ Long
- 200’ Through Truss
- 162’ & 92’ Through Plate Girder
- Two 42’ Conc. Double Cell Box Girders
PROJECT OVERVIEW

- **Design, Bid, & Build Contract**
 - Select Contractors to Bid (Owner Approved)
 - Selection Basis
 - Price
 - Contractor Specified Changeout Window Duration

- **TranSystems**
 - Designer
 - Estimate Changeout Window Duration
 - Bidding
 - Construction Management
PROJECT OVERVIEW

Design Life
- 100+ Yrs.

Design Loadings
- Cooper E-80 Live Load
- Alternate Live Load
 - (4-100 Kip Axles)
- Diesel Impact for Rolling Equipment w/o Hammer Blow for Ballast Deck

Figure 15-1-2. Cooper E 80 Load

Figure 15-1-3. Alternate Live Load on 4 Axles
PROJECT OVERVIEW

Design Loadings

- Stream Flow – 4.3 ft/second at 50 Year Water Surface
- Wind Loads – 50 psf Unloaded Structure & 30 psf Loaded Structure
- Scour – 100 Year and 500 Year Flow Scour Depth
- Seismic Design

<table>
<thead>
<tr>
<th>AREMA GROUND MOTION LEVEL</th>
<th>AREMA PERFORMANCE CRITERIA LIMIT STATE</th>
<th>RETURN PERIOD (YEARS)</th>
<th>PEAK BEDROCK ACCELERATION (g)</th>
<th>PEAK GROUND ACCELERATION (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SERVICEABILITY</td>
<td>100</td>
<td>0.063</td>
<td>0.077</td>
</tr>
<tr>
<td>2</td>
<td>ULTIMATE</td>
<td>475</td>
<td>0.17</td>
<td>0.21</td>
</tr>
<tr>
<td>3</td>
<td>SURVIVABILITY</td>
<td>2,400</td>
<td>0.36</td>
<td>0.43</td>
</tr>
</tbody>
</table>

SITE COEFFICIENT $s=1.2$
Material Types

- **Structural Steel**
 - A709 Grade 50W (No Paint)
 - Impact Requirements - T2 (non-FCM) or F2 (FCM)

- **Cast-In-Place Concrete Pier Caps/Drilled Shafts**
 - 4,000 psi

- **Prestressed Concrete Double Cell Box Beams**
 - 4,000 psi at Transfer - 5,000 psi at 28 Days

- **Reinforcing Steel**
 - A615 Grade 60 (uncoated)
BRIDGE ELEVATION

BNSF Bridge 24.8
ABUTMENT DETAILS

- Piles Welded to Embed Plate in Precast Abutment Cap
- Bolted Precast Wingwalls
AERIAL OF TEMPORARY WORK BRIDGES
PRELIMINARY CHANGEOUT WORK

- Abutment Piles Driven During Daily Track Windows
 * Up to 4 hour windows
Substructure Construction

- Drilled Shafts Installed Prior to Window
 - Spaced to Clear Existing Superstructure
- Cast-In-Place Concrete Cap Installed Under Existing Bridge Truss
 - About One Foot Clearance to Low Chord
Preliminary Changeout Work

- Truss Assembly on Falsework
TRUSS DEMOLITION PEDESTALS
FIRST 32 HOUR TRACK WINDOW

- Translation Frames Utilized
 - Truss Roll Out
 - Truss Roll In
- Skid Shoes Supporting Each Chord of Truss
- Moved Using A Threaded Rod Jack Attached to Skids
- Translation Beams Coated with Graphite Paint
NEW TRUSS SLIDE-IN
AERIAL PHOTO DURING TRACK WINDOW
FIRST 32 HOUR TRACK WINDOW VIDEO
SECOND 32 HOUR TRACK WINDOW

- **Translation Frames & Skid Shoes Utilized**
 - Truss Roll Out
 - Through Plate Girder Spans Roll In
TRUSS DEMOLITION PEDESTALS
AERIAL PHOTO DURING TRACK WINDOW
SECOND 32 HOUR TRACK WINDOW VIDEO
COMPLETED BRIDGE
LESSONS LEARNED

- Contingency Planning (What If Planning)
- Detailed Track Window Construction Schedule
- Adjustments For Second Track Window – Additional Equipment For Excavation and Demolition
- Overlapping Tasks Rather Than Linear Tasks
- Review Material Orientation For Crane Picks
- Test Slide of Spans
AWARD WINNER

2017 Best ABC Project in Lateral Slide Technology (Railroad Bridge)

In-Line Replacement of BNSF Bridge 24.8

- **Owner:** BNSF
- **Designer:** TranSystems
- **Contractor:** Hamilton Construction Co.

- **Construction Cost $20M**