Commonwealth Avenue Bridge Project
& the Use of Longitudinal Full-Depth Precast Concrete Deck Panels

Alexander K. Bardow, P.E. MassDOT State Bridge Engineer
Sterling Morrone, P.E. Project Engineer, CME Associates, Inc.
Michael P. Culmo, P.E. Chief Technology Officer, CME Associates, Inc.
Two Projects

- Project 1: Substructure Rehabilitation
 - Advanced work to facilitate ABC
 - Conventional construction behind barriers
 - Design-Bid-Build Project

- Project 2: Superstructure Replacement
 - Design-Build Project
 - ABC

Substructure Rehabilitation Project Team
- CME – Lead Designer - Structural Design
- VHB – Traffic and Highway Design
- Nobis – Geotechnical Design

Superstructure Replacement Project Team

Preliminary Design Team:
- CME – Structural Design
- VHB – Traffic and Highway Design
- Gannett Fleming – Catenary and Overhead Contact Systems (OCS) Design
- Nobis – Geotechnical Design

Design Build Team:
- Walsh Construction - Construction Lead
- HDR – Lead Designer

Fabricator:
- Oldcastle Precast, Inc.
Multi-Phase Project Approach

Project Timeline

- **March 2012**: Feasibility study
 - **2012**: CME performs feasibility study

- **April 2014**: Substructure NTP
 - **2014**: Substructure is completed

- **June 2015**: Superstructure NTP
 - **2015**: Superstructure is completed

- **June 2016**: Substructure Completed
 - **2016**: Shutdown 1 EB/GL Completed

- **August 2017**: Shutdown 1 EB/GL Completed
 - **2017**: Shutdown 2 WB Completed

- **December 2018**: Superstructure Complete
 - **2018**: Utilities moved

- **August 2018**: Shutdown 2 WB Completed
 - **2019**: Project 2 complete
Project Site

BRIDGE NO. B-16-055
Project Site

STAGING YARD

BRIDGE NO. B-16-055

World Champs!
Project Site
115kv fluid filled power lines
36” Diameter gas line
Bridge Information

Three span, 370’ total length
• Span 1 – 90’ over Commuter Railroad
• Span 2 – 160’ over I-90 EB
• Span 3 – 120’ over I-90 WB

162’ out-to-out width
• Longitudinal joints between Comm Ave EB, Greenline, and Comm Ave WB superstructures

Bridge skew
• 60+ degrees

Bridge area = 64,000 sq. ft. (~1.47 acres)
• For reference, one football field is 1.32 acres!
Average Daily Traffic:
• Route I-90 (Mass Pike): 120,000
• Commonwealth Avenue: 28,000
• High volume of pedestrian traffic at Intersection including BU students

Railroad ridership (2014 MBTA numbers):
• Commuter Railroad: 16,000 daily inbound/outbound
• Greenline “B” branch within bus detour: 11,400 daily station entries
Project 1 – Substructure Rehabilitation

- Design-Bid-Build Project to replace two pier stems and repair abutments
- To minimize impact to traveling public, Comm Ave and Greenline remained open and I-90 was reduced to 3 lanes each direction
- 400'+ long pier stems were demolished and reconstructed in ~20’ sections with existing girders on shoring posts
- Existing pier footings were reused (structurally adequate)
- Reused existing masonry abutment (originally from 1880s)
Support of Existing Girders

• Severe skew actually facilitated the work
• Girder spacing along the skew meant that spacing of posts was reasonable
• Enabled concrete removal and placement between widely spaced posts
• Construction took 2 years (800’+ of Pier)
Project 1 – Substructure Rehabilitation
Project 2 – Superstructure Replacement

• Design-Build Project
• Replacement of all beams and deck
• Majority of on-site construction was performed during two Short Duration Shutdowns:
 • **2017**: 18-day Short Duration Shutdown – Replace Greenline and Eastbound Commonwealth Avenue
 • **2018**: 16-day Short Duration Shutdown – Replace Westbound Commonwealth Avenue
 • Shutdowns occurred in late July / early August, work was completed before move-in weekend to accommodate BU students
• Utility relocations occurred in between the shutdown windows
Staging of Short Duration Shutdowns
General Approach

Use ABC to minimize impacts to all travelers

- Interstate 90
- Commuter Railroad
- Commonwealth Avenue
- Busses
- Green Line light rail (electrified)
- Pedestrians and bicycles

Conventional staged construction estimated to be 5 years
ABC Approach

Several options were studied

• Bridge Systems
 • SPMT: No reasonable staging area
 • Lateral slide: Construction over traffic

• Modular Deck Beams
 • Spans were too long, weights were too high for reasonable cranes
 • Considered squaring beams to substructure (utilities prevented this)

• Metalized conventional steel framing with a precast deck
 • Feasible
 • Used for Base Technical Concept development
General Traffic Management Approach

Interstate 90
- Maintain 2 lanes in each direction during peak periods
- Use cross overs to give contractor access to entire spans

Railroad
- Short duration closure during demolition
- Reduced speed work zone during rest of shutdown

Commonwealth Avenue
- Maintain 2 Lanes and sidewalks during shutdown
- Busses, Bicycles, Pedestrians, Emergency Vehicles

Green Line
- Full closure during shutdown
- Use busses instead

Extensive Public Outreach effort was undertaken to reduce volumes.
Typical I-90 Crossover
Utility Management Approach

11 bays carry utilities, including gas, water, and various electrical and communications lines:

- Utilities located mostly under WB side of bridge
- Build new EB structure during first shutdown
- In the year between shutdowns, relocate utilities to newly constructed EB bays
- Two (115kV) fluid-filled electric lines had to remain in service at all times
- Temporary supports were used
Protection of railroad during demolition

- Masonry Abutment Re-used
- Looking South
- New Piers
- Timber Crane Mats

Looking North
Construction Considerations

Construction over railroad:

• Train reduced speed in work zone

• Flagger would signal brief stoppage of work while train within work zone limits
Structural Considerations

Precast concrete full-depth deck panels:

• **2017**: 235 panels erected
• **2018**: 214 panels erected
Timeline Photos

Commonwealth Avenue Westbound Construction

Day 1- Day 16

Photo Credits to Boston University
Day 3: Spans 1 & 2 Steel Removal
Day 4: Span 1 Steel, Span 2 Steel Removal
Day 7: Span 1 & 2 Deck, Span 3 Demolition
Day 10: Span 2 Deck Finishing, Span 3 Steel Erection
Day 11: Span 2 Deck Finishing, Span 3 Deck Erection
Day 13: Deck Finishing and Sidewalks
Before and After Photos
Longitudinal Deck Panels

- To date most deck panels have been detailed as transverse to the supporting girders
- Causes issues:
 - Difficult to detail for skewed bridges
 - Difficulties with fitting shear connectors
 - One option – larger pockets
 - Some wish to eliminate PT
 - UHPC gaining popularity
• Previous use of longitudinal deck panels
• Similar details developed by several agencies
 • Tennessee DOT
 • NY State DOT
 • Utah DOT
Longitudinal Deck Panel - Concept

- Run panels parallel and between girders
 - Similar to partial-depth panels, but full thickness
- Use reinforced concrete connections
 - Normal concrete, high early strength concrete, and UHPC
- **Use girder flanges as closure joint form (eliminate pockets)**
 - Shear connectors can be placed where needed (no pockets)
 - Transverse closure joints located approx. 30 feet on center
 - Spray applied membrane with asphalt overlay used for this project
- Profiles can be accommodated with grinding or overlay
- Links slabs can be used for multi-span bridges
 - Works for continuous spans as well

Used for Comm. Ave.
• Great for high skews: Transverse joints can be virtually anywhere
• Repetition: Leads to reduced fabrication costs
• Length of panels can be adjusted to accommodate crane capacities
Longitudinal Deck Panels

Overhang Panels

Ease of Shear Stud Placement
Longitudinal Deck Panels

- MassDOT Standardization
 - To be added to the MassDOT Bridge Manual
Longitudinal Deck Panels

• Standardization

Simple forms that can be attached to the underside of panel

Draft Details
• Leveling Devices
 • Commonwealth Ave. had wide flanges
 • Details being developed for narrow flanges
 • Strongbacks
 • Cantilever leveling devices
 • Contractor design and option
Lessons Learned and Conclusions

• There were minor issues during construction
 • Forming method of beam haunches led to issues with shear connectors in the overhang blockouts
 • Specialized materials for setting flush rail on the deck
• The longitudinal panels were a great success
• Cost
 • $95 Million
 • Boston is pricey
 • The speed and complexity contributed to the cost
• Both phases were completed on time
• Public perception was very positive
Thank You

Substructure Rehabilitation Project Team

✓ CME – Lead Designer - Structural Design
✓ VHB – Traffic and Highway Design
✓ Nobis – Geotechnical Design

Superstructure Replacement Project Team

Preliminary Design Team:
✓ CME – Structural Design
✓ VHB – Traffic and Highway Design
✓ Gannett Fleming – Catenary and Overhead Contact Systems (OCS) Design
✓ Nobis – Geotechnical Design

Design Build Team:
✓ Walsh Construction - Construction Lead
✓ HDR – Lead Designer

Fabricator:
✓ Oldcastle Precast, Inc.
Substructure Rehabilitation