Use of UHPC for Longitudinal Joints in Deck Bulb Tee Bridge Girders

Tim Peruchini, John Stanton, Paolo Calvi
University of Washington
Outline

1. Introduction
2. Economics of UHPC
3. Proprietary vs generic UHPC
4. Behavior of UHPC joints
5. Materials for UHPC
6. Design of UHPC joints
7. Construction of UHPC joints
8. Conclusions
Introduction

• UHPC is a relatively new structural material that has properties that are useful for both **seismic** and **non-seismic ABC**. It has good properties:
 – In tension: high strength, excellent ductility.
 – In bond: very high bond strength, excellent ductility.
 – In shear: good (but less is known yet).
 – In compression: typically much stronger than the demand requires.
 – Durability: good for reducing maintenance and life cycle costs.

• Particularly effective when used in joints.

• Quite extensive research, particularly by Graybeal at FHWA. Also NCHRP 18-18.

• Now moving into the implementation phase.

• Quite a number of applications in practice, e.g. for deck joints.
Introduction

Seismic applications:

- *Deck joints* between precast girders: designed as Capacity Protected connections. They must behave elastically.

- *Column plastic hinges*: designed as energy dissipating elements:

- *Seismic retrofit*: used as a jacket on vulnerable or corroded elements
Introduction

Focus of presentation: Deck joints between precast girders.

Based on research program conducted at the University of Washington, sponsored by WSDOT.

Emphasis on design principles; Codified equations yet available.
Introduction

- Fully pc girders (e.g. deck bulb tees) save construction time by avoiding the need for casting a deck. They are a major contributor to ABC.
- The girders must be connected between flanges, for wheel loads.
- Previous connections: steel inserts in the girder flanges, welded together on-site and supplemented by a grout key.
- Connection not durable: damage under heavy truck loading.
Introduction

• UHPC connection stronger and more durable. Allows deck bulb tees to be used on major highways.
• Bars project from girder flanges, connect by lap-splices using UHPC
Introduction

UHPC has excellent bond strength. This allows

• Narrow joints, thus simple formwork
• Strength gain: quite fast. Depends on mix and curing procedures.
• Excellent durability in service, which leads to:
• Lower life-cycle costs.
Outline

1. Introduction

2. Economics of UHPC

3. Proprietary vs generic UHPC

4. Behavior of UHPC joints

5. Materials for UHPC

6. Design of UHPC joints

7. Construction of UHPC joints

8. Conclusions
Economics of UHPC

- UHPC is very expensive per cubic yard. But…….
- You do not need much of it:
 - Joints are narrow.
 - Connections are small.
- Cost of a UHPC joint about 10% - 30% of the cost of a girder.
- Extra $ cost outweighed by the value of the time savings (ABC).
Outline

1 Introduction
2 Economics of UHPC
3 Proprietary vs generic UHPC
4 Behavior of UHPC joints
5 Materials for UHPC
6 Design of UHPC joints
7 Construction of UHPC joints
8 Conclusions
Proprietary vs Generic UHPC

Proprietary
- Most UHPC used today in the US is proprietary.
- Supplier may come to site to supervise or do the mixing and casting.
- The supplier owns the risk. Material priced accordingly.

Non-proprietary
- Contractors could design, mix and cast their own generic UHPC.
- Generic → cheaper, but the contractor would own the risk.
- Most prefer to avoid the risk and pay the price of proprietary UHPC.
- Non-proprietary UHPCs are now being developed, e.g. at FIU-ABC Center. These will likely change the market-place. Need to:
 - Select target properties (bond strength, tension strength?)
 - Develop QA/QC tests and procedures for those properties.
Outline

1 Introduction
2 Economics of UHPC
3 Proprietary vs generic UHPC
4 Behavior of UHPC joints
5 Materials for UHPC
6 Design of UHPC joints
7 Construction of UHPC joints
8 Conclusions
Behavior of UHPC joints

Forces to be carried:
• Transverse moments due to wheel loads,
• Transverse moments due to correcting differential camber,
• Shear due to wheel loads or differential camber.

Other (prescriptive) criteria:
• To take full advantage of the AASHTO wheel load distribution factors, the girders must be “sufficiently connected to act as a unit”. This is interpreted here to mean that the UHPC joint has flexural strength equal to that of the pc deck member.
Behavior of UHPC joints

Transverse moments due to wheel loads

- Haunch helps.
- Moves moment from $M+$ (at joint) to $M-$ (over web).

Ignoring haunch

Including haunch

Moments due to wheel loading
Behavior of UHPC joints

Transverse moments due to correction of differential camber.

Note: shear stress ≈ 5 psi for a 1” difference in camber.
Behavior of UHPC joints

FEA of deck showed:

- M_{max} due to wheel loads only about 15% of capacity.
- “Equal strength criterion” is much more stringent criterion than moments due to applied loads.
- Design to achieve “Equal Strength” implies VERY conservative design for real wheel loads.
Behavior of UHPC joints

To give the joint the same flexural strength as the pc deck slab:

• Splice length must be great enough to ensure bar yield, not bond failure.
• Note: splice is non-contact (individual bars at about 3” centers).
Outline

1 Introduction

2 Economics of UHPC

3 Proprietary vs generic UHPC

4 Behavior of UHPC joints

5 Materials for UHPC

6 Design of UHPC joints

7 Construction of UHPC joints

8 Conclusions
Materials for UHPC joints

UHPC MATERIALS:

• Cement
• Fine Aggregate
• Water \((0.14 < w/c < 0.22)\)
• Coarse aggregate (not always)
• HRWRA
• Fly ash/slag (optional)
• Silica Fume
• Steel fibers

To create a dense, impermeable, paste.

- Fibers: very high strength \((400 \text{ ksi})\).
- \(L/d \approx 65\) designed to ensure bond failure, rather than fracture, of individual fibers.
- Gives some “pseudo-ductility” in tension.

Note: The fibers and HRWA are the most expensive items.
Materials for UHPC joints

UHPC MATERIAL USED IN UW-WSU RESEARCH.

- Mix developed by Qiao at Washington State University, Pullman.
- Structural testing done at University of Washington, Seattle.
Materials for UHPC Joints

<table>
<thead>
<tr>
<th>UHPC MIXES – A SAMPLE:</th>
<th>Units: lb/yd³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water</td>
</tr>
<tr>
<td>Lee & Lee</td>
<td>253</td>
</tr>
<tr>
<td>Graybeal</td>
<td>219</td>
</tr>
<tr>
<td>Collepardi</td>
<td>362</td>
</tr>
<tr>
<td>Allena & Newtonson</td>
<td>376</td>
</tr>
<tr>
<td>Karmout</td>
<td>303</td>
</tr>
<tr>
<td>WSU Mix C3</td>
<td>325</td>
</tr>
</tbody>
</table>

w/cm Ratio: 0.185
Volume of Steel Fibers: 1.80%

Collepardi, S., Coppola, L., Troli, R., and Collepardi M., “Mechanical properties of modified Reactive powder Concrete”, ACI international Conference on “Superplasticizers and Other Chemical Admixtures in Concrete”, SP 173, October 1997

Materials for UHPC joints

Tension and bond develop faster than compression.

![Compression Cube](image1)

Avg Strength = 16.0 ksi

\[R^2 = 0.955 \]
\[t_{50} = 1.74 \text{ days} \]

![Compression Cylinder](image2)

Avg Strength = 13.1 ksi

\[R^2 = 0.969 \]
\[t_{50} = 1.20 \text{ days} \]

![Flexural Beam](image3)

Avg Strength = 2.7 ksi

\[R^2 = 0.909 \]
\[t_{50} = 1.81 \text{ days} \]

![Split-Tension Cylinder](image4)

Avg Strength = 2.2 ksi

\[R^2 = 0.935 \]
\[t_{50} = 1.78 \text{ days} \]

![Direct Tension](image5)

Avg Strength = 1.0 ksi

\[R^2 = 0.992 \]
\[t_{50} = 0.94 \text{ days} \]

![Pullout Bond Cylinder](image6)

Avg Strength = 7.1 ksi

\[R^2 = 0.984 \]
\[t_{50} = 0.89 \text{ days} \]
Design of UHPC joints

REQUIREMENTS

• Lap-splice bars for full tension strength.
• M^+ most important – bottom bar splice.

SOLUTIONS:

Bar details:
• Hooked bars or U-bars? Greater probability of mis-placement during fabrication or bar conflicts during erection.
• Headed bars? Difficulties with getting double-headed bars made to exact required length.
• Straight bars? May need longer splice, wider joint, more UHPC.

Straight bars chosen. Joint can still be made narrow (minimum about 7”). Graybeal also finds straight bars (even epoxy coated) are best.
Design of UHPC joints

JOINT PROFILE: TO KEY OR NOT TO KEY?

Design options:

1. **Joint key** to provide shear strength. Potential for stress concentration and crack at re-entrant corner of key.

2. **Roughened vertical surface**, no key. Sliding shear force is resisted by shear friction. Diagonal cracking at higher load. Roughening method and surface preparation both affect the outcome.

3. **No preparation**. Shear force is carried by shear friction on smooth surface.

![Failure surface](image1.png)

1. Joint key

![Possible failure surfaces](image2.png)

2. Roughened surface
Design of UHPC joints

JOINT PROFILE
• UW tests on deck panels used *no preparation*.
• No sign of shear slip.
• Recommendation:
 – Form roughened vertical face of girder flange using retarder.
 – Pre-wet prior to placing UHPC.
DESIGN OF NON-CONTACT SPLICE

For conventional concrete, AASHTO requires a splice length

\[L_{\text{splice}} > L_d + s \]

\(L_d \) = development length
\(s \) = bar spacing.

UHPC:
A non-contact splice is (slightly) stronger than a contact splice.

[See Yuan and Graybeal (2015), Peruchini et al. (2017)].
Design of UHPC joints

SPLICE LENGTH OBTAINED BY TESTING

At UW, tested:

“Pullout bond” – pull the bar, react against the surrounding concrete.
“Splice bond” – pull the bar, resistance from non-contact splice bars.

All tests with…
• #5 at 6” top and bottom (gr. 60 epoxy-coated bars).
• 1.8% fibers by volume.
Design of UHPC joints

SPLICE BOND TESTS

Base conc block UHPC splice “curb”
Design of UHPC joints

These tests show (with 1” side cover):
- Yield – 3” \((4.8d_b)\)
- Fracture – 4.5” \((7.2d_b)\)

Fiber content expected to influence splice strength.

- Strength proportional to splice length.
- Not very sensitive to side cover.
 - Yuan and Graybeal (2015) found some sensitivity.
Design of UHPC joints

DATA FROM SIMULATED DECK TESTS.

Test panels simulate a transverse strip of deck with a UHPC joint.
Design of UHPC joints

SIMULATED DECK TEST SETUP

- 2’-0” x 4’-5” x 6” panels.
- #5 at 6” top and bot. (gr 60 epoxy-coated).
- 8’-0” maximum span.
- Simple span (statically determinate).
- Test upside down (to observe cracking).
Design of UHPC joints
TEST FAILURE MODES

As bars elongate inelastically & slip, crack opens at interface

For short splice lengths, splice fails by UHPC splitting.

For long splice lengths, (joint ≥ 7.1”, splice ≥ 5.1” = 8.2d_b) → failure by bar fracture.
Outline

1 Introduction

2 Economics of UHPC

3 Proprietary vs generic UHPC

4 Behavior of UHPC joints

5 Materials for UHPC

6 Design of UHPC joints

7 Construction of UHPC joints

8 Conclusions
Construction of UHPC joints

CONSTRUCTABILITY ISSUES

Mixing the UHPC
- Need high-energy mixer (pan mixer better than drum).
- Mixing procedure affects properties.
- How to ensure that the contractor’s procedure will achieve the desired results?
- Need trial batches, mock-ups, to determine procedures that work.

Depositing the UHPC
- Fresh UHPC is flowable: need tight formwork and, if girders are on a slope, possibly a top form.
- Beware set-up time. Material remains deceptively flowable, then sets up quickly. (Note: Cutting out UHPC is hard).
Construction of UHPC joints

TOLERANCES

Projecting length of bar:
- Length tolerance on projecting length of bar.
- Placement tolerance (up to +/- 0.5”?)
- Girder sweep (maybe +/- 1”?)

Increase joint width, & design splice length, by 2” to allow for tolerances.

Spacing between opposing bars
- Placement of bars in form, at plant.
- Longitudinal placement of girders on supports.
Outline

1. Introduction
2. Economics of UHPC
3. Proprietary vs generic UHPC
4. Behavior of UHPC joints
5. Materials for UHPC
6. Design of UHPC joints
7. Construction of UHPC joints
8. Conclusions
Conclusions

In general:

- UHPC is valuable for connecting precast elements for ABC.
- Bond and tension strength are the characteristics of UHPC most important for joints. Compressive strength higher than that of the surrounding concrete is unnecessary. Consider SHPC (*Sufficiently High Performance Concrete*) and focus on the properties that are really needed.
- UHPC is expensive per cubic yard, but quantities needed are small, durability is high, life cycle costs expected to be competitive.

For deck joints:

- Design of longitudinal joints is dominated by the prescriptive “Equal Strength Criterion”, rather than by actual loads.
- With straight #5 bars in a 6” deck, Can achieve fracture with splice length = 5” ($8d_b$), joint width = 7”.
- Use 9” or 10” joint width to allow for tolerances.
Questions?
Vadot Tazarv/saiidi
Wang and Wang (Eng Str dec 2018) SEU Nanjing.