FIU Research Projects

On-Going Projects

2nd-Cycle Projects (2016-grant)

  • Development of Non-Proprietary UHPC Mix [ABC-UTC-2016-C2-FIU01]: The proposed study by FIU is part of a larger overall project including all five of the ABC-UTC partner universities. The main objective of this proposed study is to develop a non-proprietary UHPC mix design, labeled “ABC-UTC Non-Proprietary UHPC Mix,” made with local materials that can achieve the necessary mechanical properties and durability for use in bridge components, repair, and connections.
  • Performance Of Existing ABC Projects: Inspection Case Studies [ABC-UTC-2016-C2-FIU02]: The primary objective of this project is to collect much needed information on performance of two in-service ABC bridges. It is envisioned that inspection will include routine visual inspection, special inspection of certain details, and application of NDT methods wherever needed.  The results will be compiled in a format for effective recording and will be reported accordingly.
  • Development of  ABC  Course Module Available ABC Bridge Systems for Short Span Bridges [ABC-UTC-2016-C2-FIU03]: The primary objective of development of this course is to provide a general knowledge about the application of ABC for short-span bridges covering various aspects of decision-making, construction methods, available elements and systems, performance and inspection, design, detailing and connections.
  • Optimization of Advanced Cementitious Material for Bridge Deck Overlays and Upgrade, Including Shotcrete [ABC-UTC-2016-C2-FIU04]: This research project addresses the design considerations required for successful application of UHPC as an alternative material for deck overlay. The research project conducts a comprehensive literature review on bridge deck overlay, material level testing, large scale level testing for UHPC bridge deck overlays, and numerical modelling to optimize design parameters.
  • Robotics and Automation in ABC Projects: Exploratory Phase [ABC-UTC-2016-C2-FIU05]: The use of automation and robotics in ABC projects has numerous advantages including increased quality of prefabricated elements, and reducing the accident rate at construction sites. In order to facilitate the implementation of automation and robotics, a comprehensive literature review and feasibility studies will be carried out to identify suitable mobile robots, construction material, prefabricated elements, and in-situ connections.
  • Laminated Wood Deck System for Folded Plate Girder [ABC-UTC-2016-C2-FIU06]: The proposed research suggests experimental testing and finite element modelling for a modular unit of FPG with laminated wood deck. In the suggested experimental work, large scale specimen will be tested under fatigue loading for service life design and under ultimate load for AASHTO strength design.
  • Understanding Critical Impacting Factors and Trends on Bridge Design, Construction, and Maintenance for Future Planning [ABC-UTC-2016-C2-FIU07]: The main objective of this project is to understand the trends of critical impacting factors and examine how these factors may impact the way that bridges are designed, constructed, and maintained.
  • Complex Network Perspectives Towards Accelerated Bridge Construction (ABC) [ABC-UTC-2016-C2-FIU08]: The objective of this study is to present a method for assessing the vulnerability of a bridge network system and a strategy for improving its resiliency. With growing attention to risk-based inspection and maintenance of infrastructure, accurate knowledge of the vulnerabilities and importance, as well as consideration of interrelation among bridges in a network becomes crucial. The bridge network system in the state of Florida, USA will be used as a case study in this project.

1st-Cycle Projects (2016-grant)

Completed Projects

3rd-Cycle Projects (2013-grant)

2nd-Cycle Projects (2013-grant)

1st-Cycle Projects (2013-grant)