FIU Research Projects

On-Going Projects

5th-Cycle Projects (2016-grant)

  • Development of Rapid In-Situ Testing for Concrete Deck Durability [ABC-UTC-2016-C5-FIU01]: This project is aiming at establishing a relationship that might exist between routine Freeze/Thaw, Rapid Chloride Permeability (RCP), Bulk Resistivity (BR), and Surface Resistivity (SR) tests and the novel method developed at FIU. If such a relation exists, the durability assessment of concrete bridge elements can be achieved in less than 20 minutes.
  • A Comprehensive Decision Support Tool for Accelerated Bridge Construction Considering Social Equity [ABC-UTC-2016-C5-FIU02]:This project aims at developing a multi-criteria decision support tool for determining the suitability of adopting ABC techniques in bridge construction projects that is more comprehensive, less subjective, and more flexible than the existing tools, extending its applicability to all state DOTs. The tool will be developed by improving the Connecticut DOT’s ABC Decision Matrix to consider (1) the benefits of ABC on roadway safety, (2) the contributions of ABC to social equity, (3) quantitative measures for the evaluation of decision criteria where possible, and (4) a systematic method for the determination of relative weights of criteria.
  • Development of Accelerated Bridge Construction Handbook (ABC Handbook[ABC-UTC-FIU-2016-C5-FIU03]: The overarching goal of this project is to develop the most document in ABC area not only for profession and practicing design engineers but also for education purposes. The handbook will provide actual design example, sample details, and other useful information for the benefit of the reader.
  • Use of Canines as a Corrosion Detection Device [ABC-UTC-FIU-2016-C5-FIU04]: This proposal outlines the utilization of canines for the detection of corrosion within bridges and other large concrete structures. This proposal will identify the proper techniques required to effectively and rapidly train a canine to detect corrosion and apply this detection capability to actual concrete structures. Figures of merit such as accuracy of detection and comparisons to current schemes such as magnetic flux will also be reported.

4th-Cycle Projects (2016-grant)

3rd-Cycle Projects (2016-grant)

  • Alternative Materials and Configurations for Prestressed-precast Concrete Pile Splice Connection [ABC-UTC-2016-C3-FIU01]: The objective of this project is to explore alternative pile splice connection configurations and materials, and to investigate the feasibility of these connections in comparison with the existing epoxy dowel splice for prestressed-precast concrete piles.
  • Alternative Technical Concepts for Contract Delivery Methods in Accelerated Bridge Construction [ABC-UTC-2016-C3-FIU02]: The primary objective for this research project is to determine the factors which impact the integration of ATC in ABC projects through the analytic hierarchy process (AHP). A hierarchy model will be developed and used to create a guideline for effective adoption of ATC in ABC projects, which will accelerate the design, construction processes, and procurement of infrastructure assets for either rehabilitation or new projects related to ABC.
  • Use of UHPC in Conjunction with Pneumatic Spray Application and Robotic for Repair and Strengthening of Culverts- Phase I [ABC-UTC-2016-C3-FIU04]: The main objective of this project is to develop a roadmap for conducting systematic research that could lead to the development of complete design and construction approach for strengthening existing substandard culverts using UHPC through robots with pneumatic spray application.
  • Prefabricated Barrier System Utilizing UHPC Connections [ABC-UTC-2016-C3-FIU05]: A new prefabricated barrier system utilizing UHPC connection to deck overhangs is proposed under this project. Under this project, component and large scale testing will be conducted along with extensive finite element models to ensure that the proposed prefabricated barrier system with UHPC connections meets TL-4 requirements.
  • Robotic Bridge Construction: Experimental Phase I [ABC-UTC-2016-C3-FIU06]: The proposed research is the second phase of the Cycle 2 project “Robotics and Automation in ABC Projects: Exploratory Phase- ABC-UTC-2016-C2-FIU05”. In the exploratory phase, the PIs are identifying suitable materials, ultra-high performance concrete”, suitable robotic systems “mobile robot and 3d-printing system”, and suitable prefabricated bridge elements “UHPC shells for bridge columns and beams”.
  • Rapid Repair and Retrofit of Timber Piles Using UHPC [ABC-UTC-2016-C3-FIU07]: Ultra-high performance concrete (UHPC) offers great solutions for repairing and retrofitting bridge elements. In this research UHPC is utilized to restore and upgrade the capacity of deteriorated timber piles. This research project investigates both bond strength between timber as substrate material and UHPC as repair material in addition to studying the load carrying mechanism of repaired/retrofitted timber piles using UHPC.
  • Automated MFL System for Corrosion Detection [ABC-UTC-2016-C3-FIU08]: The proposed project is aimed at using the methodology that is developed under other projects and supported by other agencies and automates the process for accelerated field application. The scope of the work and budget is kept at minimum budget since the majority of the related work and research have been completed under other projects.
  • UHPC connection for SDCL steel bridge system [ABC-UTC-2016-C3-FIU09]: In this research UHPC is utilized in for an SDCL steel bridge system instead of cast-in-place normal strength concrete diaphragm. The research project proposes a connection detail and numerically evaluates the structural behavior of the connection.

2nd-Cycle Projects (2016-grant)

  • Available ABC Bridge Systems for Short Span Bridges – Course Module [ABC-UTC-2016-C2-FIU03]: The primary objective of development of this course is to provide a general knowledge about the application of ABC for short-span bridges covering various aspects of decision-making, construction methods, available elements and systems, performance and inspection, design, detailing and connections.
  • Optimization of Advanced Cementitious Material for Bridge Deck Overlays and Upgrade, Including Shotcrete [ABC-UTC-2016-C2-FIU04]: This research project addresses the design considerations required for successful application of UHPC as an alternative material for deck overlay. The research project conducts a comprehensive literature review on bridge deck overlay, material level testing, large scale level testing for UHPC bridge deck overlays, and numerical modelling to optimize design parameters.
  • Laminated Wood Deck System for Folded Plate Girder [ABC-UTC-2016-C2-FIU06]: The proposed research suggests experimental testing and finite element modelling for a modular unit of FPG with laminated wood deck. In the suggested experimental work, large scale specimen will be tested under fatigue loading for service life design and under ultimate load for AASHTO strength design.

1st-Cycle Projects (2016-grant)

  • Development Of Guide For Selection Of Substructure For ABC Projects [ABC-UTC-2016-C1-FIU01]:  The primary objective of this project is to provide guidelines for decision making by the designers and bridge owners for the selection of substructure and foundation for new bridges and replacement of existing bridges using ABC methods. This is a joint project between FIU and OU, with OU focusing on foundation and FIU on remaining.

Completed Projects

3rd-Cycle Projects (2016-grant)

  • Work Zone Safety Analysis, Investigating Benefits from Accelerated Bridge Construction (ABC) on Roadway Safety [ABC-UTC-2016-C3-FIU03]: This research project fills the gap by, at first glance, seeking to identify the contributing factors that affect the severity of work zone crashes associated with worker presence and crash frequency at construction work zone locations. Then, provides quantitative evidence of how much benefits can be obtained through the ABC implementation as compared with conventional on-site bridge construction from roadway safety points of view.

2nd-Cycle Projects (2016-grant)

  • Development of Non-Proprietary UHPC Mix [ABC-UTC-2016-C2-FIU01]: The proposed study by FIU is part of a larger overall project including all five of the ABC-UTC partner universities. The main objective of this proposed study is to develop a non-proprietary UHPC mix design, labeled “ABC-UTC Non-Proprietary UHPC Mix,” made with local materials that can achieve the necessary mechanical properties and durability for use in bridge components, repair, and connections.
  • Performance Of Existing ABC Projects: Inspection Case Studies [ABC-UTC-2016-C2-FIU02]: The primary objective of this project is to collect much needed information on performance of two in-service ABC bridges. It is envisioned that inspection will include routine visual inspection, special inspection of certain details, and application of NDT methods wherever needed.  The results will be compiled in a format for effective recording and will be reported accordingly.
  • Robotics and Automation in ABC Projects: Exploratory Phase [ABC-UTC-2016-C2-FIU05]: The use of automation and robotics in ABC projects has numerous advantages including increased quality of prefabricated elements, and reducing the accident rate at construction sites. In order to facilitate the implementation of automation and robotics, a comprehensive literature review and feasibility studies will be carried out to identify suitable mobile robots, construction material, prefabricated elements, and in-situ connections.
  • Understanding Critical Impacting Factors and Trends on Bridge Design, Construction, and Maintenance for Future Planning [ABC-UTC-2016-C2-FIU07]: The main objective of this project is to understand the trends of critical impacting factors and examine how these factors may impact the way that bridges are designed, constructed, and maintained.
  • Complex Network Perspectives Towards Accelerated Bridge Construction (ABC) [ABC-UTC-2016-C2-FIU08]: The objective of this study is to present a method for assessing the vulnerability of a bridge network system and a strategy for improving its resiliency. With growing attention to risk-based inspection and maintenance of infrastructure, accurate knowledge of the vulnerabilities and importance, as well as consideration of interrelation among bridges in a network becomes crucial. The bridge network system in the state of Florida, USA will be used as a case study in this project.

1st-Cycle Projects (2016-grant)

3rd-Cycle Projects (2013-grant)

2nd-Cycle Projects (2013-grant)

1st-Cycle Projects (2013-grant)